|
||
---|---|---|
.. | ||
models/mnist | ||
web | ||
CMakeLists.txt | ||
README.md | ||
convert-h5-to-ggml.py | ||
main.cpp |
README.md
MNIST Example for GGML
This is a simple example of how to use GGML for inferencing.
Training the Model
A Google Colab notebook for training a simple two-layer network to recognize digits is located here. You can use this to save a pytorch model to be converted to ggml format.
GGML Format Conversion
GGML "format" is whatever you choose for efficient loading. In our case, we just save the hyperparameters used plus the model weights and biases. Run convert-h5-to-ggml.py to convert your pytorch model. The output format is:
- magic constant (int32)
- repeated list of tensors
- number of dimensions of tensor (int32)
- tensor dimension (int32 repeated)
- values of tensor (int32)
Run convert-h5-to-ggml.py mnist_model.state_dict
where mnist_model.state_dict
is the saved pytorch model from the Google Colab. For
quickstart, it is included in the mnist/models directory.
MNIST Network
The MNIST recognizer network is extremely simple. A fully connected layer + relu, followed by a fully connected layer + softmax. This version of the MNIST network doesn't use convolutions.
Running the example
Here is how to run the example programs:
# Build ggml + examples
git clone https://github.com/ggerganov/ggml
cd ggml
mkdir build && cd build
cmake ..
make -j4 mnist
# Run the MNIST model
./bin/mnist ../examples/mnist/models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte
For more information, checkout the corresponding programs in the examples folder.
Sample output
$ ./bin/mnist ./models/mnist/ggml-model-f32.bin ../examples/mnist/models/mnist/t10k-images.idx3-ubyte
mnist_model_load: loading model from './models/mnist/ggml-model-f32.bin'
mnist_model_load: ggml ctx size = 1.52 MB
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ * * * * _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ * * * _ _ _ * _ * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ * * _ _ _ _ _ * _ * _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ * * _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ * * _ _ _ _ _ _ * * * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ * * _ _ _ _ _ _ _ * * * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ * * _ _ _ _ _ * * _ _ * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ * * _ _ _ _ * * _ _ _ _ * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ * * * * * * _ _ _ _ _ _ * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ * * * _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ * _ _ * * * _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ * * * * * _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
ggml_graph_dump_dot: dot -Tpng mnist.dot -o mnist.dot.png && open mnist.dot.png
Predicted digit is 9
Computation graph:
Web demo
The example can be compiled with Emscripten like this:
cd examples/mnist
emcc -I../../include -I../../include/ggml -I../../examples ../../src/ggml.c main.cpp -o web/mnist.js -s EXPORTED_FUNCTIONS='["_wasm_eval","_wasm_random_digit","_malloc","_free"]' -s EXPORTED_RUNTIME_METHODS='["ccall"]' -s ALLOW_MEMORY_GROWTH=1 --preload-file models/mnist
Online demo: https://mnist.ggerganov.com