rwkv.cpp/ggml_old/examples/mnist/main.cpp

309 lines
8.7 KiB
C++

#include "ggml/ggml.h"
#include "common.h"
#include <cmath>
#include <cstdio>
#include <cstring>
#include <ctime>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
// default hparams
struct mnist_hparams {
int32_t n_input = 784;
int32_t n_hidden = 500;
int32_t n_classes = 10;
};
struct mnist_model {
mnist_hparams hparams;
struct ggml_tensor * fc1_weight;
struct ggml_tensor * fc1_bias;
struct ggml_tensor * fc2_weight;
struct ggml_tensor * fc2_bias;
struct ggml_context * ctx;
};
// load the model's weights from a file
bool mnist_model_load(const std::string & fname, mnist_model & model) {
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
auto fin = std::ifstream(fname, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
return false;
}
// verify magic
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != 0x67676d6c) {
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
return false;
}
}
auto & ctx = model.ctx;
size_t ctx_size = 0;
{
const auto & hparams = model.hparams;
const int n_input = hparams.n_input;
const int n_hidden = hparams.n_hidden;
const int n_classes = hparams.n_classes;
ctx_size += n_input * n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 weight
ctx_size += n_hidden * ggml_type_sizef(GGML_TYPE_F32); // fc1 bias
ctx_size += n_hidden * n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 weight
ctx_size += n_classes * ggml_type_sizef(GGML_TYPE_F32); // fc2 bias
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
}
// create the ggml context
{
struct ggml_init_params params = {
.mem_size = ctx_size + 1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
return false;
}
}
// Read FC1 layer 1
{
// Read dimensions
int32_t n_dims;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
{
int32_t ne_weight[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
}
// FC1 dimensions taken from file, eg. 768x500
model.hparams.n_input = ne_weight[0];
model.hparams.n_hidden = ne_weight[1];
model.fc1_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_input, model.hparams.n_hidden);
fin.read(reinterpret_cast<char *>(model.fc1_weight->data), ggml_nbytes(model.fc1_weight));
ggml_set_name(model.fc1_weight, "fc1_weight");
}
{
int32_t ne_bias[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
}
model.fc1_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_hidden);
fin.read(reinterpret_cast<char *>(model.fc1_bias->data), ggml_nbytes(model.fc1_bias));
ggml_set_name(model.fc1_bias, "fc1_bias");
}
}
// Read FC2 layer 2
{
// Read dimensions
int32_t n_dims;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
{
int32_t ne_weight[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne_weight[i]), sizeof(ne_weight[i]));
}
// FC1 dimensions taken from file, eg. 10x500
model.hparams.n_classes = ne_weight[1];
model.fc2_weight = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, model.hparams.n_hidden, model.hparams.n_classes);
fin.read(reinterpret_cast<char *>(model.fc2_weight->data), ggml_nbytes(model.fc2_weight));
ggml_set_name(model.fc2_weight, "fc2_weight");
}
{
int32_t ne_bias[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne_bias[i]), sizeof(ne_bias[i]));
}
model.fc2_bias = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_classes);
fin.read(reinterpret_cast<char *>(model.fc2_bias->data), ggml_nbytes(model.fc2_bias));
ggml_set_name(model.fc2_bias, "fc2_bias");
}
}
fin.close();
return true;
}
// evaluate the model
//
// - model: the model
// - n_threads: number of threads to use
// - digit: 784 pixel values
//
// returns 0 - 9 prediction
int mnist_eval(
const mnist_model & model,
const int n_threads,
std::vector<float> digit
) {
const auto & hparams = model.hparams;
static size_t buf_size = hparams.n_input * sizeof(float) * 4;
static void * buf = malloc(buf_size);
struct ggml_init_params params = {
.mem_size = buf_size,
.mem_buffer = buf,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_cgraph gf = {};
gf.n_threads = n_threads;
struct ggml_tensor * input = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, hparams.n_input);
memcpy(input->data, digit.data(), ggml_nbytes(input));
ggml_set_name(input, "input");
// fc1 MLP = Ax + b
ggml_tensor * fc1 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc1_weight, input), model.fc1_bias);
ggml_tensor * fc2 = ggml_add(ctx0, ggml_mul_mat(ctx0, model.fc2_weight, ggml_relu(ctx0, fc1)), model.fc2_bias);
// soft max
ggml_tensor * probs = ggml_soft_max(ctx0, fc2);
// run the computation
ggml_build_forward_expand(&gf, probs);
ggml_graph_compute (ctx0, &gf);
//ggml_graph_print (&gf);
ggml_graph_dump_dot(&gf, NULL, "mnist.dot");
const float * probs_data = ggml_get_data_f32(probs);
const int prediction = std::max_element(probs_data, probs_data + 10) - probs_data;
ggml_free(ctx0);
return prediction;
}
#ifdef __cplusplus
extern "C" {
#endif
int wasm_eval(uint8_t *digitPtr)
{
mnist_model model;
if (!mnist_model_load("models/mnist/ggml-model-f32.bin", model)) {
fprintf(stderr, "error loading model\n");
return -1;
}
std::vector<float> digit(digitPtr, digitPtr + 784);
int result = mnist_eval(model, 1, digit);
ggml_free(model.ctx);
return result;
}
int wasm_random_digit(char *digitPtr)
{
auto fin = std::ifstream("models/mnist/t10k-images.idx3-ubyte", std::ios::binary);
if (!fin) {
fprintf(stderr, "failed to open digits file\n");
return 0;
}
srand(time(NULL));
// Seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
fin.seekg(16 + 784 * (rand() % 10000));
fin.read(digitPtr, 784);
return 1;
}
#ifdef __cplusplus
}
#endif
int main(int argc, char ** argv) {
srand(time(NULL));
ggml_time_init();
if (argc != 3) {
fprintf(stderr, "Usage: %s models/mnist/ggml-model-f32.bin models/mnist/t10k-images.idx3-ubyte\n", argv[0]);
exit(0);
}
uint8_t buf[784];
mnist_model model;
std::vector<float> digit;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!mnist_model_load(argv[1], model)) {
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "models/ggml-model-f32.bin");
return 1;
}
const int64_t t_load_us = ggml_time_us() - t_start_us;
fprintf(stdout, "%s: loaded model in %8.2f ms\n", __func__, t_load_us / 1000.0f);
}
// read a random digit from the test set
{
std::ifstream fin(argv[2], std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, argv[2]);
return 1;
}
// seek to a random digit: 16-byte header + 28*28 * (random 0 - 10000)
fin.seekg(16 + 784 * (rand() % 10000));
fin.read((char *) &buf, sizeof(buf));
}
// render the digit in ASCII
{
digit.resize(sizeof(buf));
for (int row = 0; row < 28; row++) {
for (int col = 0; col < 28; col++) {
fprintf(stderr, "%c ", (float)buf[row*28 + col] > 230 ? '*' : '_');
digit[row*28 + col] = ((float)buf[row*28 + col]);
}
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
}
fprintf(stdout, "%s: predicted digit is %d\n", __func__, mnist_eval(model, 1, digit));
ggml_free(model.ctx);
return 0;
}