|  | ||
|---|---|---|
| .. | ||
| CMakeLists.txt | ||
| README.md | ||
| convert-hf-to-ggml.py | ||
| main.cpp | ||
| quantize.cpp | ||
		
			
				
				README.md
			
		
		
			
			
		
	
	💫 StarCoder
This is a C++ example running 💫 StarCoder inference using the ggml library.
The program runs on the CPU - no video card is required.
The example supports the following 💫 StarCoder models:
- bigcode/starcoder
- bigcode/gpt_bigcode-santacoderaka the smol StarCoder
Sample performance on MacBook M1 Pro:
TODO
Sample output:
$ ./bin/starcoder -h
usage: ./bin/starcoder [options]
options:
  -h, --help            show this help message and exit
  -s SEED, --seed SEED  RNG seed (default: -1)
  -t N, --threads N     number of threads to use during computation (default: 8)
  -p PROMPT, --prompt PROMPT
                        prompt to start generation with (default: random)
  -n N, --n_predict N   number of tokens to predict (default: 200)
  --top_k N             top-k sampling (default: 40)
  --top_p N             top-p sampling (default: 0.9)
  --temp N              temperature (default: 1.0)
  -b N, --batch_size N  batch size for prompt processing (default: 8)
  -m FNAME, --model FNAME
                        model path (default: models/starcoder-117M/ggml-model.bin)
$ ./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" -t 4 --top_k 0 --top_p 0.95 --temp 0.2      
main: seed = 1683881276
starcoder_model_load: loading model from '../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin'
starcoder_model_load: n_vocab = 49280
starcoder_model_load: n_ctx   = 2048
starcoder_model_load: n_embd  = 2048
starcoder_model_load: n_head  = 16
starcoder_model_load: n_layer = 24
starcoder_model_load: ftype   = 3
starcoder_model_load: ggml ctx size = 1794.90 MB
starcoder_model_load: memory size =   768.00 MB, n_mem = 49152
starcoder_model_load: model size  =  1026.83 MB
main: prompt: 'def fibonnaci('
main: number of tokens in prompt = 7, first 8 tokens: 563 24240 78 2658 64 2819 7 
def fibonnaci(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fibonacci(n-1) + fibonacci(n-2)
print(fibo(10))
main: mem per token =  9597928 bytes
main:     load time =   480.43 ms
main:   sample time =    26.21 ms
main:  predict time =  3987.95 ms / 19.36 ms per token
main:    total time =  4580.56 ms
Quick start
git clone https://github.com/ggerganov/ggml
cd ggml
# Convert HF model to ggml
python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder
# Build ggml + examples
mkdir build && cd build
cmake .. && make -j4 starcoder starcoder-quantize
# quantize the model
./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3
# run inference
./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" --top_k 0 --top_p 0.95 --temp 0.2
Downloading and converting the original models (💫 StarCoder)
You can download the original model and convert it to ggml format using the script convert-hf-to-ggml.py:
# Convert HF model to ggml
python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder
This conversion requires that you have python and Transformers installed on your computer.
Quantizing the models
You can also try to quantize the ggml models via 4-bit integer quantization.
# quantize the model
./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3
| Model | Original size | Quantized size | Quantization type | 
|---|---|---|---|
| bigcode/gpt_bigcode-santacoder | 5396.45 MB | 1026.83 MB | 4-bit integer (q4_1) | 
| bigcode/starcoder | 71628.23 MB | 13596.23 MB | 4-bit integer (q4_1) |