rwkv.cpp/rwkv/sampling.py

41 lines
1.2 KiB
Python

import numpy as np
import torch
from typing import Dict
from torch.nn import functional as F
def sample_logits(out: torch.Tensor, temperature: float = 1.0, top_p: float = 0.8, logit_bias: Dict[int, float] = None) -> int:
probs = F.softmax(out.cpu(), dim=-1).numpy()
return sample_probs(probs, temperature, top_p, logit_bias)
def sample_probs(probs: np.ndarray, temperature: float = 1.0, top_p: float = 0.8, logit_bias: Dict[int, float] = None) -> int:
assert 0.0 <= temperature, 'temperature'
assert 0.0 <= top_p <= 1.0, 'top_p'
if top_p == 0.0:
top_p = 1.0
if logit_bias is not None:
logits = np.log(probs)
for token in logit_bias.keys():
logits[token] += logit_bias[token]
probs = np.exp(logits) / np.sum(np.exp(logits))
if temperature == 0.0:
return np.argmax(probs).item()
if top_p < 1.0:
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = np.power(probs, 1.0 / temperature)
probs = probs / np.sum(probs)
return np.random.choice(a=len(probs), p=probs)