rwkv.cpp/ggml_old/tests/test-blas0.c

266 lines
6.4 KiB
C

#include "ggml.h"
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <math.h>
#include <sys/time.h>
#include <arm_neon.h>
#include <Accelerate/Accelerate.h>
uint64_t get_time_us() {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
//
// naive implementation
//
void mul_mat_f32_0(
const float * restrict src0, // M x K
const float * restrict src1, // N x K (transposed)
float * dst,
int m, int n, int k) {
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
float sum = 0;
for (int l = 0; l < k; l++) {
sum += src0[i*k + l] * src1[j*k + l];
}
dst[j*m + i] = sum;
}
}
}
int main(int argc, const char ** argv) {
if (argc < 4) {
printf("Usage: %s M N K\n", argv[0]);
return 1;
}
int M = atoi(argv[1]);
int N = atoi(argv[2]);
int K = atoi(argv[3]);
srand(time(NULL));
if (M == 0) M = rand() % 1000 + 1;
if (N == 0) N = rand() % 1000 + 1;
if (K == 0) K = rand() % 1000 + 1;
printf("M = %d, N = %d, K = %d\n", M, N, K);
float * src0 = malloc(sizeof(float)*M*K);
float * src1 = malloc(sizeof(float)*N*K);
float * dst0 = malloc(sizeof(float)*M*N); // naive
float * dst1 = malloc(sizeof(float)*M*N); // blas
struct ggml_init_params params = {
.mem_size = 2048ul*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
};
struct ggml_context * ctx0 = ggml_init(params);
struct ggml_tensor * s0_f32 = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, K, M);
struct ggml_tensor * s1_f32 = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, K, N);
struct ggml_tensor * s0_f16 = ggml_new_tensor_2d(ctx0, GGML_TYPE_F16, K, M);
struct ggml_tensor * s1_f16 = ggml_new_tensor_2d(ctx0, GGML_TYPE_F16, K, N);
for (int j = 0; j < M; j++) {
for (int i = 0; i < K; i++) {
//src0[j*K + i] = j;
src0[j*K + i] = 1e-3*(rand() % 1000);
}
}
for (int j = 0; j < N; j++) {
for (int i = 0; i < K; i++) {
//src1[j*K + i] = j + 1;
src1[j*K + i] = 1e-3*(rand() % 1000);
}
}
// copy src0 to s0_f32
{
float * p_f32 = s0_f32->data;
ggml_fp16_t * p_f16 = s0_f16->data;
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
p_f32[i*K + j] = src0[i*K + j];
p_f16[i*K + j] = ggml_fp32_to_fp16(src0[i*K + j]);
}
}
}
// copy src1 to s1_f32
{
float * p_f32 = s1_f32->data;
ggml_fp16_t * p_f16 = s1_f16->data;
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
p_f32[i*K + j] = src1[i*K + j];
p_f16[i*K + j] = ggml_fp32_to_fp16(src1[i*K + j]);
}
}
}
const clock_t start = clock();
const uint64_t start_us = get_time_us();
double iM = 1.0/M;
mul_mat_f32_0(src0, src1, dst0, M, N, K);
// Use BLAS sgemm from Accelerate framework
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, N, M, K, 1.0f, src1, K, src0, K, 0.0f, dst1, M);
struct ggml_tensor * dst2 = NULL;
struct ggml_tensor * dst3 = NULL;
{
dst2 = ggml_mul_mat(ctx0, s0_f32, s1_f32);
struct ggml_cgraph gf = ggml_build_forward(dst2);
ggml_graph_compute(ctx0, &gf);
}
{
dst3 = ggml_mul_mat(ctx0, s0_f16, s1_f32);
struct ggml_cgraph gf = ggml_build_forward(dst3);
ggml_graph_compute(ctx0, &gf);
}
bool ok_blas = true;
bool ok_ggml_f32 = true;
bool ok_ggml_f16 = true;
// check BLAS
for (int i = 0; i < M*N; i++) {
if (fabs(dst0[i] - dst1[i])/fabs(dst0[i]) > 0.0001) {
printf("dst0[%d] = %f, dst1[%d] = %f\n", i, dst0[i], i, dst1[i]);
ok_blas = false;
}
}
// check ggml (f32)
{
float * p = dst2->data;
for (int i = 0; i < M*N; i++) {
if (fabs(dst0[i] - p[i])/fabs(dst0[i]) > 0.0001) {
printf("dst0[%d] = %f, dst2[%d] = %f\n", i, dst0[i], i, p[i]);
ok_ggml_f32 = false;
}
}
}
// check ggml (f16)
{
float * p = dst3->data;
for (int i = 0; i < M*N; i++) {
if (fabs(dst0[i] - p[i])/fabs(dst0[i]) > 0.01) {
printf("dst0[%d] = %f, dst3[%d] = %f\n", i, dst0[i], i, p[i]);
ok_ggml_f16 = false;
}
}
}
{
const clock_t end = clock();
const uint64_t end_us = get_time_us();
printf("%s: elapsed ticks: %ld\n", __func__, end - start);
}
#if 0
// print src0
printf("src0:\n");
for (int i = 0; i < M; i++) {
for (int j = 0; j < K; j++) {
printf("%4.1f ", src0[i*K+j]);
}
printf("\n");
}
// print src1
printf("src1:\n");
for (int i = 0; i < N; i++) {
for (int j = 0; j < K; j++) {
printf("%4.1f ", src1[i*K+j]);
}
printf("\n");
}
printf("\n");
printf("dst0 (naive):\n");
for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {
printf("%4.1f ", dst0[j*M+i]);
}
printf("\n");
}
printf("\n");
printf("dst1 (BLAS):\n");
for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {
printf("%4.1f ", dst1[j*M+i]);
}
printf("\n");
}
printf("\n");
printf("dst2 (ggml f32):\n");
for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {
printf("%4.1f ", ((float *)dst2->data)[j*M+i]);
}
printf("\n");
}
printf("\n");
printf("dst3 (ggml f16):\n");
for (int j = 0; j < N; j++) {
for (int i = 0; i < M; i++) {
printf("%4.1f ", ((float *)dst3->data)[j*M+i]);
}
printf("\n");
}
printf("\n");
#endif
free(src0);
free(src1);
free(dst0);
free(dst1);
ggml_free(ctx0);
printf("ok_blas = %d\n", ok_blas);
if (!ok_blas) {
printf("ERROR: BLAS failed\n");
}
printf("ok_ggml_f32 = %d\n", ok_ggml_f32);
if (!ok_ggml_f32) {
printf("ERROR: ggml failed\n");
}
printf("ok_ggml_f16 = %d\n", ok_ggml_f16);
if (!ok_ggml_f16) {
printf("ERROR: ggml failed\n");
}
return (ok_blas && ok_ggml_f32 && ok_ggml_f16) ? 0 : 1;
}