159 lines
4.6 KiB
Python
159 lines
4.6 KiB
Python
import sys
|
|
import struct
|
|
import json
|
|
import numpy as np
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
import sentencepiece.sentencepiece_model_pb2 as model
|
|
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
def bytes_to_unicode():
|
|
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
|
|
cs = [chr(n) for n in cs]
|
|
|
|
return dict(zip(bs, cs))
|
|
|
|
if len(sys.argv) < 3:
|
|
print("Usage: convert-h5-to-ggml.py dir-model [use-f32]\n")
|
|
print(" ftype == 0 -> float32")
|
|
print(" ftype == 1 -> float16")
|
|
sys.exit(1)
|
|
|
|
|
|
# output in the same directory as the model
|
|
dir_model = sys.argv[1]
|
|
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
|
|
|
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
hparams = json.load(f)
|
|
|
|
# possible data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
#
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
ftype = 1
|
|
if len(sys.argv) > 2:
|
|
ftype = int(sys.argv[2])
|
|
if ftype < 0 or ftype > 1:
|
|
print("Invalid ftype: " + str(ftype))
|
|
sys.exit(1)
|
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
dir_model, low_cpu_mem_usage=True, trust_remote_code=True
|
|
)
|
|
# print (model)
|
|
|
|
# print(tokenizer.encode('I believe the meaning of life is'))
|
|
|
|
list_vars = model.state_dict()
|
|
for name in list_vars.keys():
|
|
print(name, list_vars[name].shape, list_vars[name].dtype)
|
|
|
|
fout = open(fname_out, "wb")
|
|
|
|
print(hparams)
|
|
|
|
fout.write(struct.pack("i", 0x67676D6C)) # magic: ggml in hex
|
|
fout.write(struct.pack("i", hparams["d_model"]))
|
|
fout.write(struct.pack("i", hparams["max_seq_len"]))
|
|
fout.write(struct.pack("i", hparams["n_heads"]))
|
|
fout.write(struct.pack("i", hparams["n_layers"]))
|
|
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
fout.write(struct.pack("f", hparams["attn_config"]["alibi_bias_max"]))
|
|
fout.write(struct.pack("f", hparams["attn_config"]["clip_qkv"] or 0.0))
|
|
fout.write(struct.pack("i", ftype))
|
|
|
|
vocab_size = hparams["vocab_size"]
|
|
|
|
encoder = tokenizer.vocab
|
|
# Add added_tokens (special tokens) to the encoder
|
|
encoder.update(tokenizer.get_added_vocab())
|
|
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v:k for k, v in byte_encoder.items()}
|
|
|
|
counter = 0
|
|
# sort by value
|
|
for key in sorted(encoder, key=encoder.get):
|
|
# workaround for key error when c not found
|
|
text=""
|
|
for c in key:
|
|
if c not in byte_decoder:
|
|
text += c
|
|
else:
|
|
text += chr(byte_decoder[c] )
|
|
text = bytearray( text, encoding="utf-8" )
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
counter += 1
|
|
|
|
# Repeat last token until vocab_size
|
|
while counter < vocab_size:
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
counter += 1
|
|
|
|
# assert counter == config.vocab_size
|
|
|
|
for name in list_vars.keys():
|
|
data = list_vars[name].squeeze().numpy()
|
|
print("Processing variable: " + name + " with shape: ", data.shape)
|
|
|
|
n_dims = len(data.shape)
|
|
|
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
|
ftype_cur = 0
|
|
if ftype != 0:
|
|
if name[-7:] == ".weight" and n_dims == 2:
|
|
print(" Converting to float16")
|
|
data = data.astype(np.float16)
|
|
ftype_cur = 1
|
|
else:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
else:
|
|
if data.dtype != np.float32:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
|
|
# header
|
|
str = name.encode("utf-8")
|
|
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
|
|
for i in range(n_dims):
|
|
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
|
|
fout.write(str)
|
|
|
|
# data
|
|
data.tofile(fout)
|
|
|
|
fout.close()
|
|
|
|
print("Done. Output file: " + fname_out)
|
|
print("")
|