796 lines
29 KiB
C++
796 lines
29 KiB
C++
#include "rwkv.h"
|
|
#include "ggml.h"
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <unordered_map>
|
|
|
|
// --- Utilities ---
|
|
|
|
#define FP32_SIZE 4
|
|
|
|
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
|
|
#define RWKV_ASSERT_FALSE(x, ...) \
|
|
do { \
|
|
if (!(x)) { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
|
return false; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL.
|
|
#define RWKV_ASSERT_NULL(x, ...) \
|
|
do { \
|
|
if (!(x)) { \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
|
return NULL; \
|
|
} \
|
|
} while (0)
|
|
|
|
// Reads single int32 value from a file.
|
|
bool read_int32(FILE * file, int32_t * dest) {
|
|
RWKV_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
|
|
return true;
|
|
}
|
|
|
|
// --- Model definition and loading utilities ---
|
|
|
|
struct rwkv_layer {
|
|
struct ggml_tensor * ln1_weight;
|
|
struct ggml_tensor * ln1_bias;
|
|
|
|
// RWKV, also called "attention" by the author.
|
|
struct ggml_tensor * att_time_mix_k;
|
|
struct ggml_tensor * att_time_mix_v;
|
|
struct ggml_tensor * att_time_mix_r;
|
|
struct ggml_tensor * att_time_first;
|
|
struct ggml_tensor * att_time_decay;
|
|
struct ggml_tensor * att_key;
|
|
struct ggml_tensor * att_value;
|
|
struct ggml_tensor * att_receptance;
|
|
struct ggml_tensor * att_output;
|
|
|
|
struct ggml_tensor * ln2_weight;
|
|
struct ggml_tensor * ln2_bias;
|
|
|
|
// FFN.
|
|
struct ggml_tensor * ffn_time_mix_k;
|
|
struct ggml_tensor * ffn_time_mix_r;
|
|
struct ggml_tensor * ffn_key;
|
|
struct ggml_tensor * ffn_value;
|
|
struct ggml_tensor * ffn_receptance;
|
|
};
|
|
|
|
struct rwkv_model {
|
|
int32_t n_vocab;
|
|
int32_t n_layer;
|
|
int32_t n_embed;
|
|
// 0 for float32, 1 for float16.
|
|
int32_t data_type;
|
|
|
|
struct ggml_tensor * emb;
|
|
|
|
struct ggml_tensor * ln0_weight;
|
|
struct ggml_tensor * ln0_bias;
|
|
|
|
std::vector<rwkv_layer> layers;
|
|
|
|
struct ggml_tensor * ln_out_weight;
|
|
struct ggml_tensor * ln_out_bias;
|
|
|
|
struct ggml_tensor * head;
|
|
};
|
|
|
|
// Finds model parameter by key and sets it into dest.
|
|
// If the parameter was not found, returns false.
|
|
bool set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, char * key, struct ggml_tensor ** dest) {
|
|
struct ggml_tensor * parameter = (*parameters)[key];
|
|
RWKV_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
|
|
*dest = parameter;
|
|
return true;
|
|
}
|
|
|
|
// Finds block parameter by block index and key and sets it into dest.
|
|
// If the parameter was not found, returns false.
|
|
bool set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, int32_t block_index, char * key, struct ggml_tensor ** dest) {
|
|
char full_key[128];
|
|
sprintf(full_key, "blocks.%d.%s", block_index, key);
|
|
return set_parameter(parameters, full_key, dest);
|
|
}
|
|
|
|
size_t get_memory_required_mb(int32_t n_vocab, int32_t n_layer, int32_t n_embed, int32_t data_type) {
|
|
if (n_vocab == 50277) {
|
|
// Non-exact values are extrapolated (slightly bigger than needed).
|
|
// TODO Measure values exactly
|
|
static const size_t memory_required_mb[6][4] = {
|
|
/* FP32 FP16 Q4_0 Q4_1
|
|
169M */ { 650, 327, 105, 165}, // All measured exactly
|
|
/* 430M */ { 1650, 830, 263, 415}, // FP32, FP16 are exact
|
|
/* 1.5B */ { 5795, 2907, 923, 1454}, // FP32, FP16 are exact
|
|
/* 3B */ {11610, 5720, 1816, 2860}, // FP16 is exact
|
|
/* 7B */ {27090, 13634, 4328, 6817},
|
|
/* 14B */ {54180, 27267, 8656, 13634}
|
|
};
|
|
|
|
/* 169M */ if (n_layer == 12 && n_embed == 768) return memory_required_mb[0][data_type];
|
|
/* 430M */ if (n_layer == 24 && n_embed == 1024) return memory_required_mb[1][data_type];
|
|
/* 1.5B */ if (n_layer == 24 && n_embed == 2048) return memory_required_mb[2][data_type];
|
|
/* 3B */ if (n_layer == 32 && n_embed == 2560) return memory_required_mb[3][data_type];
|
|
/* 7B */ if (n_layer == 32 && n_embed == 4096) return memory_required_mb[4][data_type];
|
|
/* 14B */ if (n_layer == 40 && n_embed == 5120) return memory_required_mb[5][data_type];
|
|
}
|
|
|
|
fprintf(
|
|
stderr,
|
|
"Unknown RWKV model configuration: n_vocab = %d, n_layer = %d, n_embed = %d, data_type = %d; allocating 4 GB of memory\n",
|
|
n_vocab, n_layer, n_embed, data_type
|
|
);
|
|
|
|
return size_t(4) * 1024;
|
|
}
|
|
|
|
// --- Operators ---
|
|
|
|
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
|
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
|
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
|
x = ggml_norm(ctx, x);
|
|
x = ggml_mul(ctx, x, weight);
|
|
x = ggml_add(ctx, x, bias);
|
|
return x;
|
|
}
|
|
|
|
// --- Implementation ---
|
|
|
|
struct rwkv_context {
|
|
struct rwkv_model * model;
|
|
struct ggml_tensor * token_index;
|
|
struct ggml_tensor * state;
|
|
struct ggml_tensor ** state_parts;
|
|
struct ggml_tensor * logits;
|
|
struct ggml_context * ctx;
|
|
struct ggml_cgraph * graph;
|
|
bool freed;
|
|
};
|
|
|
|
struct rwkv_context * rwkv_init_from_file(const char * file_path, int n_threads) {
|
|
FILE * file = fopen(file_path, "rb");
|
|
RWKV_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path);
|
|
|
|
int32_t magic;
|
|
read_int32(file, &magic);
|
|
RWKV_ASSERT_NULL(magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
|
|
|
int32_t version;
|
|
read_int32(file, &version);
|
|
RWKV_ASSERT_NULL(version == RWKV_FILE_VERSION, "Unsupported file version %d", version);
|
|
|
|
struct rwkv_model * model = (struct rwkv_model *) calloc(1, sizeof(struct rwkv_model));
|
|
|
|
read_int32(file, &(model->n_vocab));
|
|
RWKV_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);
|
|
|
|
read_int32(file, &(model->n_embed));
|
|
RWKV_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);
|
|
|
|
read_int32(file, &(model->n_layer));
|
|
RWKV_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
|
|
|
read_int32(file, &(model->data_type));
|
|
RWKV_ASSERT_NULL(
|
|
model->data_type == 0 ||
|
|
model->data_type == 1 ||
|
|
model->data_type == 2 ||
|
|
model->data_type == 3,
|
|
"Unsupported model data type %d",
|
|
model->data_type
|
|
);
|
|
|
|
// Initialize ggml
|
|
struct ggml_init_params params;
|
|
params.mem_size = get_memory_required_mb(model->n_vocab, model->n_layer, model->n_embed, model->data_type) * 1024 * 1024;
|
|
params.mem_buffer = NULL;
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
|
|
std::unordered_map<std::string, struct ggml_tensor *> parameters;
|
|
|
|
while (true) {
|
|
int32_t dim_count;
|
|
fread(&dim_count, 4, 1, file);
|
|
|
|
if (feof(file)) {
|
|
break;
|
|
}
|
|
|
|
RWKV_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
|
|
|
int32_t key_length;
|
|
read_int32(file, &key_length);
|
|
RWKV_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length);
|
|
|
|
int32_t data_type;
|
|
read_int32(file, &data_type);
|
|
RWKV_ASSERT_NULL(
|
|
data_type == 0 ||
|
|
data_type == 1 ||
|
|
data_type == 2 ||
|
|
data_type == 3,
|
|
"Unsupported parameter data type %d",
|
|
data_type
|
|
);
|
|
|
|
ggml_type ggml_data_type;
|
|
|
|
switch (data_type) {
|
|
case 0: ggml_data_type = GGML_TYPE_F32; break;
|
|
case 1: ggml_data_type = GGML_TYPE_F16; break;
|
|
case 2: ggml_data_type = GGML_TYPE_Q4_0; break;
|
|
case 3: ggml_data_type = GGML_TYPE_Q4_1; break;
|
|
default: return NULL;
|
|
}
|
|
|
|
struct ggml_tensor * tensor;
|
|
|
|
int32_t x = -1;
|
|
int32_t y = -1;
|
|
int32_t element_count;
|
|
|
|
if (dim_count == 1) {
|
|
read_int32(file, &x);
|
|
element_count = x;
|
|
tensor = ggml_new_tensor_1d(ctx, ggml_data_type, x);
|
|
} else if (dim_count == 2) {
|
|
read_int32(file, &x);
|
|
read_int32(file, &y);
|
|
element_count = x * y;
|
|
tensor = ggml_new_tensor_2d(ctx, ggml_data_type, x, y);
|
|
} else {
|
|
abort();
|
|
}
|
|
|
|
std::string key(key_length, 0);
|
|
RWKV_ASSERT_NULL(fread(&key[0], 1, key_length, file) == key_length, "Failed to read parameter key");
|
|
|
|
RWKV_ASSERT_NULL(fread(tensor->data, 1, ggml_nbytes(tensor), file) == ggml_nbytes(tensor), "Failed to read parameter data");
|
|
|
|
parameters[key] = tensor;
|
|
}
|
|
|
|
fclose(file);
|
|
|
|
model->layers.resize(model->n_layer);
|
|
|
|
set_parameter(¶meters, "emb.weight", &(model->emb));
|
|
|
|
set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight));
|
|
set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias));
|
|
|
|
for (int i = 0; i < model->n_layer; i++) {
|
|
rwkv_layer layer = model->layers[i];
|
|
|
|
set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight));
|
|
set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias));
|
|
|
|
set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k));
|
|
set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v));
|
|
set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r));
|
|
set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first));
|
|
set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay));
|
|
set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key));
|
|
set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value));
|
|
set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance));
|
|
set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output));
|
|
|
|
set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight));
|
|
set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias));
|
|
|
|
set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
|
|
set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
|
|
set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key));
|
|
set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value));
|
|
set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance));
|
|
|
|
model->layers[i] = layer;
|
|
}
|
|
|
|
set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight));
|
|
set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias));
|
|
|
|
set_parameter(¶meters, "head.weight", &(model->head));
|
|
|
|
// Verify order of dimensions
|
|
struct ggml_tensor * emb = model->emb;
|
|
RWKV_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
|
RWKV_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %d", emb->ne[0]);
|
|
RWKV_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %d", emb->ne[1]);
|
|
|
|
int32_t n_vocab = model->n_vocab;
|
|
int32_t n_embed = model->n_embed;
|
|
int32_t n_layer = model->n_layer;
|
|
|
|
// Build graph
|
|
struct ggml_tensor * state = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_layer * 5 * n_embed);
|
|
|
|
// x = self.w.emb.weight[token]
|
|
struct ggml_tensor * token_index = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
|
struct ggml_tensor * x = ggml_get_rows(ctx, model->emb, token_index);
|
|
|
|
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
|
x = rwkv_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
|
|
|
|
// We collect parts of new state here. Each part is (n_embed) vector.
|
|
struct ggml_tensor ** state_parts = new ggml_tensor * [n_layer * 5];
|
|
|
|
for (int i = 0; i < n_layer; i++) {
|
|
auto layer = model->layers[i];
|
|
|
|
// RWKV/time mixing
|
|
{
|
|
// self.layer_norm(x, self.w.blocks[i].ln1)
|
|
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
|
// state[5 * i + 1]
|
|
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * FP32_SIZE);
|
|
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
|
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
|
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
|
struct ggml_tensor * xk = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
|
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_k))
|
|
);
|
|
struct ggml_tensor * xv = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
|
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_v))
|
|
);
|
|
struct ggml_tensor * xr = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
|
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_r))
|
|
);
|
|
// state[5 * i + 1] = x
|
|
state_parts[5 * i + 1] = x0;
|
|
|
|
// r = torch.sigmoid(rw @ xr)
|
|
struct ggml_tensor * r = ggml_sigmoid(
|
|
ctx,
|
|
ggml_mul_mat(ctx, layer.att_receptance, xr)
|
|
);
|
|
// k = kw @ xk
|
|
struct ggml_tensor * k = ggml_mul_mat(ctx, layer.att_key, xk);
|
|
// v = vw @ xv
|
|
struct ggml_tensor * v = ggml_mul_mat(ctx, layer.att_value, xv);
|
|
|
|
// aa = state[5 * i + 2]
|
|
// bb = state[5 * i + 3]
|
|
// pp = state[5 * i + 4]
|
|
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * FP32_SIZE);
|
|
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * FP32_SIZE);
|
|
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE);
|
|
|
|
// ww = time_first + k
|
|
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
|
// qq = torch.maximum(pp, ww)
|
|
struct ggml_tensor * qq = ggml_max(ctx, pp, ww);
|
|
// e1 = torch.exp(pp - qq)
|
|
struct ggml_tensor * e1 = ggml_exp(ctx, ggml_sub(ctx, pp, qq));
|
|
// e2 = torch.exp(ww - qq)
|
|
struct ggml_tensor * e2 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
|
// a = e1 * aa + e2 * v
|
|
struct ggml_tensor * a = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, e1, aa),
|
|
ggml_mul(ctx, e2, v)
|
|
);
|
|
// b = e1 * bb + e2
|
|
struct ggml_tensor * b = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, e1, bb),
|
|
e2
|
|
);
|
|
// wkv = a / b
|
|
struct ggml_tensor * wkv = ggml_div(ctx, a, b);
|
|
// ww = pp + time_decay
|
|
ww = ggml_add(ctx, pp, layer.att_time_decay);
|
|
// qq = torch.maximum(ww, k)
|
|
qq = ggml_max(ctx, ww, k);
|
|
// e1 = torch.exp(ww - qq)
|
|
e1 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
|
// e2 = torch.exp(k - qq)
|
|
e2 = ggml_exp(ctx, ggml_sub(ctx, k, qq));
|
|
// state[5 * i + 2] = e1 * aa + e2 * v
|
|
state_parts[5 * i + 2] = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, e1, aa),
|
|
ggml_mul(ctx, e2, v)
|
|
);
|
|
// state[5 * i + 3] = e1 * bb + e2
|
|
state_parts[5 * i + 3] = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, e1, bb),
|
|
e2
|
|
);
|
|
// state[5 * i + 4] = qq
|
|
state_parts[5 * i + 4] = qq;
|
|
// ow @ (r * wkv)
|
|
x = ggml_add(
|
|
ctx,
|
|
x,
|
|
ggml_mul_mat(
|
|
ctx,
|
|
layer.att_output,
|
|
ggml_mul(ctx, r, wkv)
|
|
)
|
|
);
|
|
}
|
|
|
|
// FFN/channel mixing
|
|
{
|
|
// self.layer_norm(x, self.w.blocks[i].ln2)
|
|
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
|
// state[5 * i + 0]
|
|
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * FP32_SIZE);
|
|
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
|
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
|
struct ggml_tensor * xk = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
|
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_k))
|
|
);
|
|
struct ggml_tensor * xr = ggml_add(
|
|
ctx,
|
|
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
|
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_r))
|
|
);
|
|
// state[5 * i + 0] = x
|
|
state_parts[5 * i + 0] = x0;
|
|
|
|
// r = torch.sigmoid(rw @ xr)
|
|
struct ggml_tensor * r = ggml_sigmoid(
|
|
ctx,
|
|
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
|
|
);
|
|
// k = torch.square(torch.relu(kw @ xk))
|
|
struct ggml_tensor * k = ggml_sqr(ctx, ggml_relu(
|
|
ctx,
|
|
ggml_mul_mat(ctx, layer.ffn_key, xk)
|
|
));
|
|
// r * (vw @ k)
|
|
x = ggml_add(
|
|
ctx,
|
|
x,
|
|
ggml_mul(
|
|
ctx,
|
|
r,
|
|
ggml_mul_mat(ctx, layer.ffn_value, k)
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
// x = self.layer_norm(x, self.w.ln_out)
|
|
x = rwkv_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
|
|
|
|
// x = (self.w.head.weight @ x).float()
|
|
struct ggml_tensor * logits = ggml_mul_mat(ctx, model->head, x);
|
|
|
|
struct ggml_cgraph * graph = (struct ggml_cgraph *) calloc(1, sizeof(struct ggml_cgraph));
|
|
|
|
*graph = ggml_build_forward(logits);
|
|
|
|
for (int i = 0; i < n_layer * 5; i++) {
|
|
ggml_build_forward_expand(graph, state_parts[i]);
|
|
}
|
|
|
|
graph->n_threads = n_threads;
|
|
|
|
struct rwkv_context * rwkv_ctx = (struct rwkv_context *) calloc(1, sizeof(struct rwkv_context));
|
|
rwkv_ctx->model = model;
|
|
rwkv_ctx->token_index = token_index;
|
|
rwkv_ctx->state = state;
|
|
rwkv_ctx->state_parts = state_parts;
|
|
rwkv_ctx->logits = logits;
|
|
rwkv_ctx->ctx = ctx;
|
|
rwkv_ctx->graph = graph;
|
|
return rwkv_ctx;
|
|
}
|
|
|
|
size_t rwkv_get_state_buffer_element_count(struct rwkv_context * ctx) {
|
|
return ctx->model->n_layer * 5 * ctx->model->n_embed;
|
|
}
|
|
|
|
size_t rwkv_get_logits_buffer_element_count(struct rwkv_context * ctx) {
|
|
return ctx->model->n_vocab;
|
|
}
|
|
|
|
bool rwkv_eval(struct rwkv_context * ctx, long int token, float * state_in, float * state_out, float * logits_out) {
|
|
RWKV_ASSERT_FALSE(state_out != NULL, "state_out is NULL");
|
|
RWKV_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL");
|
|
|
|
int32_t n_layer = ctx->model->n_layer;
|
|
int32_t n_embed = ctx->model->n_embed;
|
|
int32_t n_vocab = ctx->model->n_vocab;
|
|
|
|
RWKV_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);
|
|
|
|
ggml_set_i32(ctx->token_index, 0);
|
|
ggml_set_i32_1d(ctx->token_index, 0, token);
|
|
|
|
if (state_in == NULL) {
|
|
ggml_set_f32(ctx->state, 0.0F);
|
|
|
|
for (int i = 0; i < n_layer; i++) {
|
|
// state[5 * i + 4] = -1e30
|
|
ggml_set_f32(
|
|
ggml_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE),
|
|
-1e30F
|
|
);
|
|
}
|
|
} else {
|
|
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * FP32_SIZE);
|
|
}
|
|
|
|
ggml_graph_compute(ctx->ctx, ctx->graph);
|
|
|
|
for (size_t i = 0; i < n_layer * 5; i++) {
|
|
struct ggml_tensor * part = ctx->state_parts[i];
|
|
|
|
memcpy(state_out + i * n_embed, part->data, part->ne[0] * FP32_SIZE);
|
|
}
|
|
|
|
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * FP32_SIZE);
|
|
|
|
// Uncomment to measure used memory for adding the value into get_memory_required_mb.
|
|
//fprintf(stderr, "Used mem: %d MB\n", ggml_used_mem(ctx->ctx) / 1024 / 1024);
|
|
|
|
return true;
|
|
}
|
|
|
|
void rwkv_free(struct rwkv_context * ctx) {
|
|
ggml_free(ctx->ctx);
|
|
|
|
delete ctx->model;
|
|
delete ctx->state_parts;
|
|
delete ctx;
|
|
}
|
|
|
|
bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, int q_type) {
|
|
RWKV_ASSERT_FALSE(q_type == 2 || q_type == 3, "Unsupported quantization type %d", q_type);
|
|
|
|
ggml_type type;
|
|
|
|
switch (q_type) {
|
|
case 2: type = GGML_TYPE_Q4_0; break;
|
|
case 3: type = GGML_TYPE_Q4_1; break;
|
|
default: return false;
|
|
};
|
|
|
|
RWKV_ASSERT_FALSE(type == GGML_TYPE_Q4_0 || type == GGML_TYPE_Q4_1, "Unsupported data type %d", type);
|
|
|
|
printf("Loading model from '%s'\n", model_file_path_in);
|
|
|
|
auto finp = std::ifstream(model_file_path_in, std::ios::binary);
|
|
RWKV_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in);
|
|
|
|
auto fout = std::ofstream(model_file_path_out, std::ios::binary);
|
|
RWKV_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out);
|
|
|
|
// Process header
|
|
{
|
|
uint32_t magic;
|
|
finp.read((char *) &magic, sizeof(magic));
|
|
RWKV_ASSERT_FALSE(magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
|
fout.write((char *) &magic, sizeof(magic));
|
|
|
|
uint32_t format_version;
|
|
finp.read((char *) &format_version, sizeof(format_version));
|
|
RWKV_ASSERT_FALSE(format_version == RWKV_FILE_VERSION, "Unsupported file version %d", format_version);
|
|
fout.write((char *) &format_version, sizeof(format_version));
|
|
|
|
int32_t n_vocab;
|
|
int32_t n_embed;
|
|
int32_t n_layer;
|
|
int32_t data_type;
|
|
|
|
finp.read((char *) &n_vocab, sizeof(n_vocab));
|
|
finp.read((char *) &n_embed, sizeof(n_embed));
|
|
finp.read((char *) &n_layer, sizeof(n_layer));
|
|
finp.read((char *) &data_type, sizeof(data_type));
|
|
|
|
RWKV_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type);
|
|
|
|
data_type = q_type;
|
|
|
|
fout.write((char *) &n_vocab, sizeof(n_vocab));
|
|
fout.write((char *) &n_embed, sizeof(n_embed));
|
|
fout.write((char *) &n_layer, sizeof(n_layer));
|
|
fout.write((char *) &data_type, sizeof(data_type));
|
|
}
|
|
|
|
// Process parameters
|
|
{
|
|
size_t total_size_orig = 0;
|
|
size_t total_size_new = 0;
|
|
|
|
std::vector<float> work;
|
|
|
|
std::vector<uint8_t> data_u8;
|
|
std::vector<ggml_fp16_t> data_f16;
|
|
std::vector<float> data_f32;
|
|
|
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
|
|
|
while (true) {
|
|
int32_t n_dims;
|
|
int32_t key_length;
|
|
int32_t parameter_data_type;
|
|
|
|
finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
finp.read(reinterpret_cast<char *>(&key_length), sizeof(key_length));
|
|
finp.read(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type));
|
|
|
|
if (finp.eof()) {
|
|
break;
|
|
}
|
|
|
|
int32_t nelements = 1;
|
|
int32_t ne[2] = { 1, 1 };
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
nelements *= ne[i];
|
|
}
|
|
|
|
std::string name(key_length, 0);
|
|
finp.read(&name[0], key_length);
|
|
|
|
{
|
|
static const char * parameter_data_type_str[] = {
|
|
"f32",
|
|
"f16",
|
|
"q4_0",
|
|
"q4_1"
|
|
};
|
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], parameter_data_type_str[parameter_data_type]);
|
|
}
|
|
|
|
// Quantize only 2D tensors
|
|
bool quantize = n_dims == 2;
|
|
|
|
if (quantize) {
|
|
if (parameter_data_type != 0 && parameter_data_type != 1) {
|
|
fprintf(stderr, "unsupported data type %d for integer quantization\n", parameter_data_type);
|
|
return false;
|
|
}
|
|
|
|
if (parameter_data_type == 1) {
|
|
data_f16.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
|
|
data_f32.resize(nelements);
|
|
for (int i = 0; i < nelements; ++i) {
|
|
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
|
}
|
|
} else {
|
|
data_f32.resize(nelements);
|
|
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
|
}
|
|
|
|
parameter_data_type = q_type;
|
|
} else {
|
|
const int bytes_per_element = (parameter_data_type == 0) ? sizeof(float) : sizeof(uint16_t);
|
|
data_u8.resize(nelements * bytes_per_element);
|
|
finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bytes_per_element);
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
|
fout.write(reinterpret_cast<char *>(&key_length), sizeof(key_length));
|
|
fout.write(reinterpret_cast<char *>(¶meter_data_type), sizeof(parameter_data_type));
|
|
|
|
for (int i = 0; i < n_dims; ++i) {
|
|
fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
|
}
|
|
|
|
fout.write(&name[0], key_length);
|
|
|
|
if (quantize) {
|
|
printf("quantizing... ");
|
|
work.resize(nelements); // for quantization
|
|
|
|
size_t cur_size = 0;
|
|
// This is a histogramm of some values. If it shows single 1.0, then all 0.0, something went very wrong!
|
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
|
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
|
} break;
|
|
default:
|
|
{
|
|
fprintf(stderr, "unsupported quantization type %d\n", type);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
fout.write(reinterpret_cast<char *>(work.data()), cur_size);
|
|
total_size_new += cur_size;
|
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float) / 1024.0 / 1024.0, cur_size / 1024.0 / 1024.0);
|
|
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
|
hist_all[i] += hist_cur[i];
|
|
}
|
|
|
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
|
printf("%5.3f ", hist_cur[i] / float(nelements));
|
|
}
|
|
|
|
printf("\n");
|
|
} else {
|
|
printf("size = %8.3f MB\n", data_u8.size() / 1024.0 / 1024.0);
|
|
fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
|
|
total_size_new += data_u8.size();
|
|
}
|
|
|
|
total_size_orig += nelements * sizeof(float);
|
|
}
|
|
|
|
printf("model size = %8.2f MB\n", total_size_orig / 1024.0 / 1024.0);
|
|
printf("quant size = %8.2f MB\n", total_size_new / 1024.0 / 1024.0);
|
|
|
|
{
|
|
int64_t sum_all = 0;
|
|
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
|
sum_all += hist_all[i];
|
|
}
|
|
|
|
printf("hist: ");
|
|
|
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
|
printf("%5.3f ", hist_all[i] / float(sum_all));
|
|
}
|
|
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
finp.close();
|
|
fout.close();
|
|
|
|
return true;
|
|
}
|
|
|
|
const char * rwkv_get_system_info_string(void) {
|
|
static std::string s;
|
|
|
|
s = "";
|
|
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
|
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
|
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
|
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
|
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
|
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
|
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
|
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
|
|
|
return s.c_str();
|
|
}
|