rwkv.cpp/rwkv/convert_pytorch_to_ggml.py

182 lines
5.4 KiB
Python

# Converts an RWKV model checkpoint to an rwkv.cpp compatible file.
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float32
# Get model checkpoints from https://huggingface.co/BlinkDL
# File format:
#
# RWKVModelFile {
# // All ints and floats are in machine byte order.
# // Magic is "ggml" string bytes.
# int32 magic = 0x67676d66;
# int32 version = 100;
# int32 n_vocab;
# int32 n_embed;
# int32 n_layer;
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O, 5 if Q4_2, 6 if Q4_3.
# int32 data_type;
# // Read until EOF.
# Parameter[] parameters;
# }
#
# Parameter {
# int32 dim_count;
# int32 key_length;
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O, 5 if Q4_2, 6 if Q4_3.
# int32 data_type;
# // Compared to PyTorch's tensor.shape, dimension order is reversed here!
# int32[dim_count] shape;
# // Keys are like "emb.weight", "block.0.ln1.weight".
# uint8[key_length] key_utf8;
# // float32: 4 * element_count bytes.
# // float16: 2 * element_count bytes.
# // Q4_0: element_count / 32 * 20 bytes.
# // Q4_1: element_count / 32 * 24 bytes.
# // Q4_1_O: element_count / 32 * 24 bytes.
# byte[] data;
# }
import os
import argparse
import struct
import torch
from typing import Dict
def parse_args():
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint to an rwkv.cpp compatible file')
parser.add_argument('src_path', help='Path to PyTorch checkpoint file')
parser.add_argument('dest_path', help='Path to rwkv.cpp checkpoint file, will be overwritten')
parser.add_argument('data_type', help='Data type, float16 or float32', type=str, choices=['float16', 'float32'], default='float32')
return parser.parse_args()
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
n_layer = 0
while f'blocks.{n_layer}.ln1.weight' in state_dict:
n_layer += 1
assert n_layer > 0
return n_layer
def write_state_dict(state_dict: Dict[str, torch.Tensor], dest_path: str, data_type: str) -> None:
emb_weight: torch.Tensor = state_dict['emb.weight']
n_layer = get_layer_count(state_dict)
n_vocab = emb_weight.shape[0]
n_embed = emb_weight.shape[1]
with open(dest_path, 'wb') as out_file:
out_file.write(struct.pack(
# Disable padding with '='
'=iiiiii',
# Magic: 'ggmf' in hex
0x67676d66,
# llama.cpp uses file versions 1+, let's use 100+ for rwkv.cpp
100,
n_vocab,
n_embed,
n_layer,
1 if data_type == 'float16' else 0
))
for k in state_dict.keys():
tensor = state_dict[k].float()
# Same processing as in "RWKV_in_150_lines.py"
if '.time_' in k:
# (1, 1, n_embed) -> (n_embed)
tensor = tensor.squeeze()
if '.time_decay' in k:
tensor = -torch.exp(tensor)
# Keep 1-dim vectors in fp32
if data_type == 'float16' and len(tensor.shape) > 1:
tensor = tensor.half()
shape = tensor.shape
print(f'Writing {k}, shape {shape}, type {tensor.dtype}')
k_encoded: bytes = k.encode('utf-8')
out_file.write(struct.pack(
'=iii',
len(shape),
len(k_encoded),
1 if tensor.dtype == torch.float16 else 0
))
# Dimension order is reversed here:
# * PyTorch shape is (x rows, y columns)
# * ggml shape is (y elements in a row, x elements in a column)
# Both shapes represent the same tensor.
for dim in reversed(tensor.shape):
out_file.write(struct.pack('=i', dim))
out_file.write(k_encoded)
tensor.numpy().tofile(out_file)
def main() -> None:
args = parse_args()
print(f'Reading {args.src_path}')
state_dict: Dict[str, torch.Tensor] = torch.load(args.src_path, map_location='cpu')
write_state_dict(state_dict, args.dest_path, args.data_type)
print('Done')
# --- Tests ---
def test() -> None:
test_file_path = 'convert_pytorch_rwkv_to_ggml_test.tmp'
try:
state_dict: Dict[str, torch.Tensor] = {
'emb.weight': torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=torch.float32),
'blocks.0.ln1.weight': torch.tensor([1], dtype=torch.float32)
}
write_state_dict(state_dict, dest_path=test_file_path, data_type='float32')
with open(test_file_path, 'rb') as input:
actual_bytes: bytes = input.read()
expected_bytes: bytes = struct.pack(
'=iiiiii' + 'iiiii10sffffff' + 'iiii19sf',
0x67676d66,
100,
3,
2,
1,
0,
# emb.weight
2,
10,
0,
2, 3,
'emb.weight'.encode('utf-8'),
1.0, 2.0, 3.0,
4.0, 5.0, 6.0,
# blocks.0.ln1.weight
1,
19,
0,
1,
'blocks.0.ln1.weight'.encode('utf-8'),
1.0
)
assert list(actual_bytes) == list(expected_bytes), f'\nActual: {list(actual_bytes)}\nExpected: {list(expected_bytes)}'
print('All tests pass')
finally:
if os.path.isfile(test_file_path):
os.remove(test_file_path)
if __name__ == "__main__":
main()