# Merges a LoRA checkpoint in PyTorch format (.pth) into an rwkv.cpp model file. # Usage: python merge_lora_into_ggml.py C:\rwkv.cpp-169M.bin C:\my-lora.pth 32 C:\rwkv.cpp-169M-with-my-lora.bin # LoRA format is compatible with https://github.com/Blealtan/RWKV-LM-LoRA # You need to know lora_alpha value to perform the merge. # Source model must be in either FP16 or FP32 format. Quantization can be performed after merging. import argparse import struct import torch import numpy as np def parse_args(): parser = argparse.ArgumentParser(description='Merge a PyTorch LoRA checkpoint (.pth) into an rwkv.cpp model file') parser.add_argument('src_path', help='Path to source rwkv.cpp model') parser.add_argument('lora_path', help='Path to LoRA checkpoint in PyTorch format') parser.add_argument('lora_alpha', type=int, help='Value of lora_alpha parameter used when training this LoRA checkpoint') parser.add_argument('dest_path', help='Path to destination rwkv.cpp model, will be overwitten with the merged model') return parser.parse_args() def write_parameter(out_file, key: str, parameter: torch.Tensor) -> None: assert parameter.dtype == torch.float32 or parameter.dtype == torch.float16 key_encoded: bytes = key.encode('utf-8') out_file.write(struct.pack( '=iii', len(parameter.shape), len(key_encoded), 1 if parameter.dtype == torch.float16 else 0 )) # Dimension order is reversed here: # * PyTorch shape is (x rows, y columns) # * ggml shape is (y elements in a row, x elements in a column) # Both shapes represent the same tensor. for dim in reversed(parameter.shape): out_file.write(struct.pack('=i', dim)) out_file.write(key_encoded) parameter.numpy().tofile(out_file) def main() -> None: args = parse_args() print(f'Reading {args.lora_path}') lora_state_dict: dict[str, torch.Tensor] = torch.load(args.lora_path, map_location='cpu') print(f'Merging') with open(args.src_path, 'rb') as in_file, open(args.dest_path, 'wb') as out_file: # noinspection PyTypeChecker header: tuple[int, int, int, int, int, int] = struct.unpack('=iiiiii', in_file.read(6 * 4)) assert header[0] == 0x67676d66, 'Invalid magic value' assert header[1] == 100, 'Invalid version number' assert header[5] == 0 or header[5] == 1, 'Only FP32 and FP16 models are supported' out_file.write(struct.pack('=iiiiii', *header)) while True: parameter_header_bytes: bytes = in_file.read(3 * 4) if len(parameter_header_bytes) == 0: break dim_count, key_length, data_type = struct.unpack('=iii', parameter_header_bytes) # noinspection PyTypeChecker shape: tuple[int] = struct.unpack('=' + 'i' * dim_count, in_file.read(dim_count * 4)) # ggml order to PyTorch shape: list[int] = [d for d in reversed(shape)] key: str = in_file.read(key_length).decode('utf-8') print(f'* {key} {shape}') assert data_type == 0 or data_type == 1, 'Only FP32 and FP16 models are supported' element_count: int = 1 for dim in shape: element_count *= dim parameter_np: np.ndarray = np.frombuffer( in_file.read((2 if data_type == 1 else 4) * element_count), dtype=(np.half if data_type == 1 else np.single) ) parameter: torch.Tensor = torch.tensor(parameter_np).view(shape) if key in lora_state_dict: replacement: torch.Tensor = lora_state_dict[key].float() # Same processing as in convert_pytorch_to_ggml.py if '.time_' in key: # (1, 1, n_embed) -> (n_embed) replacement = replacement.squeeze() if '.time_decay' in key: replacement = -torch.exp(replacement) if parameter.dtype == torch.float16: replacement = replacement.half() assert replacement.shape == parameter.shape, f'Parameter {key} has shape {parameter.shape} in model file ' \ f'and shape {replacement.shape} in LoRA file' parameter = replacement print(f'Replaced parameter {key}') del lora_state_dict[key] for suffix in ['.weight', '']: lora_A_key: str = key.replace('.weight', '') + '.lora_A' + suffix lora_B_key: str = key.replace('.weight', '') + '.lora_B' + suffix if lora_A_key in lora_state_dict: lora_A: torch.Tensor = lora_state_dict[lora_A_key] lora_B: torch.Tensor = lora_state_dict[lora_B_key] assert lora_B.shape[1] == lora_A.shape[0], f'Invalid shape of LoRA matrices for {key}: ' \ f'{lora_A.shape}, {lora_B.shape}' lora_R: int = lora_B.shape[1] replacement: torch.Tensor = parameter + lora_B @ lora_A * (args.lora_alpha / lora_R) if parameter.dtype == torch.float16: replacement = replacement.half() parameter = replacement print(f'Merged LoRA into parameter {key}, lora_r = {lora_R}') del lora_state_dict[lora_A_key] del lora_state_dict[lora_B_key] break write_parameter(out_file, key, parameter) for key in lora_state_dict: print(f'WARNING: Unused parameter in LoRA state dict {key}') print('Done') if __name__ == "__main__": main()