# rwkv.cpp This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [ggerganov/ggml](https://github.com/ggerganov/ggml). Besides the usual **FP32**, it supports **FP16** and **quantized INT4** inference on CPU. This project is **CPU only**. RWKV is a novel large language model architecture, [with the largest model in the family having 14B parameters](https://huggingface.co/BlinkDL/rwkv-4-pile-14b). In contrast to Transformer with `O(n^2)` attention, RWKV requires only state from previous step to calculate logits. This makes RWKV very CPU-friendly on large context lenghts. This project provides [a C library rwkv.h](rwkv.h) and [a convinient Python wrapper](rwkv%2Frwkv_cpp_model.py) for it. **TODO (contributions welcome!)**: 1. Optimize AVX2 implementation of `Q4_1_O` matmul — currently, it is as slow as `FP32` 2. Measure latency and perplexity of different model sizes (169M to 14B) and data types (`FP32`, `FP16`, `Q4_0`, `Q4_1`, `Q4_1_O`) 3. Test on Linux (including Colab) and MacOS 4. Make required memory calculation more robust (see [#4](https://github.com/saharNooby/rwkv.cpp/issues/4)) ## How to use ### 1. Clone the repo **Requirements**: [git](https://gitforwindows.org/). ```commandline git clone https://github.com/saharNooby/rwkv.cpp.git cd rwkv.cpp ``` ### 2. Get the rwkv.cpp library #### Option 2.1. Download a pre-compiled library ##### Windows Check out [Releases](https://github.com/saharNooby/rwkv.cpp/releases), download appropriate ZIP for your CPU, extract `rwkv.dll` file into `bin\Release\` directory inside the repository directory. To check whether your CPU supports AVX2 or AVX-512, [use CPU-Z](https://www.cpuid.com/softwares/cpu-z.html). #### Option 2.2. Build the library yourself ##### Windows **Requirements**: [CMake](https://cmake.org/download/) or [CMake from anaconda](https://anaconda.org/conda-forge/cmake), MSVC compiler. ```commandline cmake -DBUILD_SHARED_LIBS=ON . cmake --build . --config Release ``` If everything went OK, `bin\Release\rwkv.dll` file should appear. ##### Linux / MacOS **Requirements**: CMake (Linux: `sudo apt install cmake`, MacOS: `brew install cmake`, anaconoda: [cmake package](https://anaconda.org/conda-forge/cmake)). ```commandline cmake -DBUILD_SHARED_LIBS=ON . cmake --build . --config Release ``` **Anaconda & M1 users**: please verify that `CMAKE_SYSTEM_PROCESSOR: arm64` after running `cmake -DBUILD_SHARED_LIBS=ON .` — if it detects `x86_64`, edit the `CMakeLists.txt` file under the `# Compile flags` to add `set(CMAKE_SYSTEM_PROCESSOR "arm64")`. If everything went OK, `librwkv.so` (Linux) or `rwkv.o` (MacOS) file should appear in the base repo folder. ### 3. Download an RWKV model from [Hugging Face](https://huggingface.co/BlinkDL) like [this one](https://huggingface.co/BlinkDL/rwkv-4-pile-169m/blob/main/RWKV-4-Pile-169M-20220807-8023.pth) and convert it into `ggml` format **Requirements**: Python 3.x with [PyTorch](https://pytorch.org/get-started/locally/). ```commandline # Windows python rwkv\convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float16 # Linux / MacOS python rwkv/convert_pytorch_to_ggml.py ~/Downloads/RWKV-4-Pile-169M-20220807-8023.pth ~/Downloads/rwkv.cpp-169M.bin float16 ``` #### 3.1. Optionally, quantize the model To convert the model into INT4 quantized format, run: ```commandline # Windows python rwkv\quantize.py C:\rwkv.cpp-169M.bin C:\rwkv.cpp-169M-Q4_1_O.bin 4 # Linux / MacOS python rwkv/quantize.py ~/Downloads/rwkv.cpp-169M.bin ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin 4 ``` Formats available: - `4`: `Q4_1_O`, best quality, very slow (as `FP32`). - `3`: `Q4_1`, poor quality, very fast (as `FP16`). - `2`: `Q4_0`, worst quality, breaks larger models, moderately fast (between `FP16` and `FP32`). ### 4. Run the model **Requirements**: Python 3.x with [PyTorch](https://pytorch.org/get-started/locally/) and [tokenizers](https://pypi.org/project/tokenizers/). **Note**: change the model path with the non-quantized model for the full weights model. To generate some text, run: ```commandline # Windows python rwkv\generate_completions.py C:\rwkv.cpp-169M-Q4_1_O.bin # Linux / MacOS python rwkv/generate_completions.py ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin ``` To chat with a bot, run: ```commandline # Windows python rwkv\chat_with_bot.py C:\rwkv.cpp-169M-Q4_1_O.bin # Linux / MacOS python rwkv/chat_with_bot.py ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin ``` Edit [generate_completions.py](rwkv%2Fgenerate_completions.py) or [chat_with_bot.py](rwkv%2Fchat_with_bot.py) to change prompts and sampling settings. --- Example of using `rwkv.cpp` in your custom Python script: ```python import rwkv_cpp_model import rwkv_cpp_shared_library # Change to model paths used above (quantized or full weights) model_path = r'C:\rwkv.cpp-169M.bin' model = rwkv_cpp_model.RWKVModel( rwkv_cpp_shared_library.load_rwkv_shared_library(), model_path ) logits, state = None, None for token in [1, 2, 3]: logits, state = model.eval(token, state) print(f'Output logits: {logits}') # Don't forget to free the memory after you've done working with the model model.free() ```