#include "utils.h"

#include <cassert>
#include <cstring>
#include <fstream>
#include <string>
#include <iterator>
#include <algorithm>

 #if defined(_MSC_VER) || defined(__MINGW32__)
 #include <malloc.h> // using malloc.h with MSC/MINGW
 #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
 #include <alloca.h>
 #endif

bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
    // determine sensible default number of threads.
    // std::thread::hardware_concurrency may not be equal to the number of cores, or may return 0.
#ifdef __linux__
    std::ifstream cpuinfo("/proc/cpuinfo");
    params.n_threads = std::count(std::istream_iterator<std::string>(cpuinfo),
                                  std::istream_iterator<std::string>(),
                                  std::string("processor"));
#endif
    if (params.n_threads == 0) {
        params.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency());
    }

    bool invalid_param = false;
    std::string arg;
    for (int i = 1; i < argc; i++) {
        arg = argv[i];

        if (arg == "-s" || arg == "--seed") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.seed = std::stoi(argv[i]);
        } else if (arg == "-t" || arg == "--threads") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_threads = std::stoi(argv[i]);
        } else if (arg == "-p" || arg == "--prompt") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.prompt = argv[i];
        } else if (arg == "-f" || arg == "--file") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            std::ifstream file(argv[i]);
            std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
            if (params.prompt.back() == '\n') {
                params.prompt.pop_back();
            }
        } else if (arg == "-n" || arg == "--n_predict") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_predict = std::stoi(argv[i]);
        } else if (arg == "--top_k") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.top_k = std::stoi(argv[i]);
        } else if (arg == "-c" || arg == "--ctx_size") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_ctx = std::stoi(argv[i]);
        } else if (arg == "--memory_f16") {
            params.memory_f16 = true;
        } else if (arg == "--top_p") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.top_p = std::stof(argv[i]);
        } else if (arg == "--temp") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.temp = std::stof(argv[i]);
        } else if (arg == "--repeat_last_n") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.repeat_last_n = std::stoi(argv[i]);
        } else if (arg == "--repeat_penalty") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.repeat_penalty = std::stof(argv[i]);
        } else if (arg == "-b" || arg == "--batch_size") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_batch = std::stoi(argv[i]);
        } else if (arg == "-m" || arg == "--model") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.model = argv[i];
        } else if (arg == "-i" || arg == "--interactive") {
            params.interactive = true;
        } else if (arg == "--interactive-first") {
            params.interactive_start = true;
        } else if (arg == "-ins" || arg == "--instruct") {
            params.instruct = true;
        } else if (arg == "--color") {
            params.use_color = true;
        } else if (arg == "-r" || arg == "--reverse-prompt") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.antiprompt.push_back(argv[i]);
        } else if (arg == "--perplexity") {
            params.perplexity = true;
        } else if (arg == "--ignore-eos") {
            params.ignore_eos = true;
        } else if (arg == "--n_parts") {
            if (++i >= argc) {
                invalid_param = true;
                break;
            }
            params.n_parts = std::stoi(argv[i]);
        } else if (arg == "-h" || arg == "--help") {
            gpt_print_usage(argc, argv, params);
            exit(0);
        } else if (arg == "--random-prompt") {
            params.random_prompt = true;
        } else {
            fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
            gpt_print_usage(argc, argv, params);
            exit(1);
        }
    }
    if (invalid_param) {
        fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
        gpt_print_usage(argc, argv, params);
        exit(1);
    }

    return true;
}

void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
    fprintf(stderr, "usage: %s [options]\n", argv[0]);
    fprintf(stderr, "\n");
    fprintf(stderr, "options:\n");
    fprintf(stderr, "  -h, --help            show this help message and exit\n");
    fprintf(stderr, "  -i, --interactive     run in interactive mode\n");
    fprintf(stderr, "  --interactive-first   run in interactive mode and wait for input right away\n");
    fprintf(stderr, "  -ins, --instruct      run in instruction mode (use with Alpaca models)\n");
    fprintf(stderr, "  -r PROMPT, --reverse-prompt PROMPT\n");
    fprintf(stderr, "                        run in interactive mode and poll user input upon seeing PROMPT (can be\n");
    fprintf(stderr, "                        specified more than once for multiple prompts).\n");
    fprintf(stderr, "  --color               colorise output to distinguish prompt and user input from generations\n");
    fprintf(stderr, "  -s SEED, --seed SEED  RNG seed (default: -1, use random seed for <= 0)\n");
    fprintf(stderr, "  -t N, --threads N     number of threads to use during computation (default: %d)\n", params.n_threads);
    fprintf(stderr, "  -p PROMPT, --prompt PROMPT\n");
    fprintf(stderr, "                        prompt to start generation with (default: empty)\n");
    fprintf(stderr, "  --random-prompt       start with a randomized prompt.\n");
    fprintf(stderr, "  -f FNAME, --file FNAME\n");
    fprintf(stderr, "                        prompt file to start generation.\n");
    fprintf(stderr, "  -n N, --n_predict N   number of tokens to predict (default: %d)\n", params.n_predict);
    fprintf(stderr, "  --top_k N             top-k sampling (default: %d)\n", params.top_k);
    fprintf(stderr, "  --top_p N             top-p sampling (default: %.1f)\n", params.top_p);
    fprintf(stderr, "  --repeat_last_n N     last n tokens to consider for penalize (default: %d)\n", params.repeat_last_n);
    fprintf(stderr, "  --repeat_penalty N    penalize repeat sequence of tokens (default: %.1f)\n", params.repeat_penalty);
    fprintf(stderr, "  -c N, --ctx_size N    size of the prompt context (default: %d)\n", params.n_ctx);
    fprintf(stderr, "  --ignore-eos          ignore end of stream token and continue generating\n");
    fprintf(stderr, "  --memory_f16          use f16 instead of f32 for memory key+value\n");
    fprintf(stderr, "  --temp N              temperature (default: %.1f)\n", params.temp);
    fprintf(stderr, "  --n_parts N           number of model parts (default: -1 = determine from dimensions)\n");
    fprintf(stderr, "  -b N, --batch_size N  batch size for prompt processing (default: %d)\n", params.n_batch);
    fprintf(stderr, "  --perplexity          compute perplexity over the prompt\n");
    fprintf(stderr, "  -m FNAME, --model FNAME\n");
    fprintf(stderr, "                        model path (default: %s)\n", params.model.c_str());
    fprintf(stderr, "\n");
}

std::string gpt_random_prompt(std::mt19937 & rng) {
    const int r = rng() % 10;
    switch (r) {
        case 0: return "So";
        case 1: return "Once upon a time";
        case 2: return "When";
        case 3: return "The";
        case 4: return "After";
        case 5: return "If";
        case 6: return "import";
        case 7: return "He";
        case 8: return "She";
        case 9: return "They";
        default: return "To";
    }

    return "The";
}

// TODO: not great allocating this every time
std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) {
    // initialize to prompt numer of chars, since n_tokens <= n_prompt_chars
    std::vector<llama_token> res(text.size() + (int)add_bos);
    int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos);
    assert(n >= 0);
    res.resize(n);

    return res;
}