# 💫 StarCoder This is a C++ example running 💫 StarCoder inference using the [ggml](https://github.com/ggerganov/ggml) library. The program runs on the CPU - no video card is required. The example supports the following 💫 StarCoder models: - `bigcode/starcoder` - `bigcode/gpt_bigcode-santacoder` aka the smol StarCoder Sample performance on MacBook M1 Pro: TODO Sample output: ``` $ ./bin/starcoder -h usage: ./bin/starcoder [options] options: -h, --help show this help message and exit -s SEED, --seed SEED RNG seed (default: -1) -t N, --threads N number of threads to use during computation (default: 8) -p PROMPT, --prompt PROMPT prompt to start generation with (default: random) -n N, --n_predict N number of tokens to predict (default: 200) --top_k N top-k sampling (default: 40) --top_p N top-p sampling (default: 0.9) --temp N temperature (default: 1.0) -b N, --batch_size N batch size for prompt processing (default: 8) -m FNAME, --model FNAME model path (default: models/starcoder-117M/ggml-model.bin) $ ./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" -t 4 --top_k 0 --top_p 0.95 --temp 0.2 main: seed = 1683881276 starcoder_model_load: loading model from '../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin' starcoder_model_load: n_vocab = 49280 starcoder_model_load: n_ctx = 2048 starcoder_model_load: n_embd = 2048 starcoder_model_load: n_head = 16 starcoder_model_load: n_layer = 24 starcoder_model_load: ftype = 3 starcoder_model_load: ggml ctx size = 1794.90 MB starcoder_model_load: memory size = 768.00 MB, n_mem = 49152 starcoder_model_load: model size = 1026.83 MB main: prompt: 'def fibonnaci(' main: number of tokens in prompt = 7, first 8 tokens: 563 24240 78 2658 64 2819 7 def fibonnaci(n): if n == 0: return 0 elif n == 1: return 1 else: return fibonacci(n-1) + fibonacci(n-2) print(fibo(10)) main: mem per token = 9597928 bytes main: load time = 480.43 ms main: sample time = 26.21 ms main: predict time = 3987.95 ms / 19.36 ms per token main: total time = 4580.56 ms ``` ## Quick start ```bash git clone https://github.com/ggerganov/ggml cd ggml # Convert HF model to ggml python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder # Build ggml + examples mkdir build && cd build cmake .. && make -j4 starcoder starcoder-quantize # quantize the model ./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3 # run inference ./bin/starcoder -m ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin -p "def fibonnaci(" --top_k 0 --top_p 0.95 --temp 0.2 ``` ## Downloading and converting the original models (💫 StarCoder) You can download the original model and convert it to `ggml` format using the script `convert-hf-to-ggml.py`: ``` # Convert HF model to ggml python examples/starcoder/convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder ``` This conversion requires that you have python and Transformers installed on your computer. ## Quantizing the models You can also try to quantize the `ggml` models via 4-bit integer quantization. ``` # quantize the model ./bin/starcoder-quantize ../models/bigcode/gpt_bigcode-santacoder-ggml.bin ../models/bigcode/gpt_bigcode-santacoder-ggml-q4_1.bin 3 ``` | Model | Original size | Quantized size | Quantization type | | --- | --- | --- | --- | | `bigcode/gpt_bigcode-santacoder` | 5396.45 MB | 1026.83 MB | 4-bit integer (q4_1) | | `bigcode/starcoder` | 71628.23 MB | 13596.23 MB | 4-bit integer (q4_1) |