# Provides terminal-based chat interface for RWKV model. import os import sys import argparse import pathlib import copy from typing import List import sampling import tokenizers import rwkv_cpp_model import rwkv_cpp_shared_library # ======================================== Script settings ======================================== # Copied from https://github.com/BlinkDL/ChatRWKV/blob/9ca4cdba90efaee25cfec21a0bae72cbd48d8acd/chat.py#L92-L178 CHAT_LANG = 'English' # English // Chinese QA_PROMPT = False # True: Q & A prompt // False: chat prompt (need large model) if CHAT_LANG == 'English': interface = ':' if QA_PROMPT: user = "User" bot = "Bot" # Or: 'The following is a verbose and detailed Q & A conversation of factual information.' init_prompt = f''' The following is a verbose and detailed conversation between an AI assistant called {bot}, and a human user called {user}. {bot} is intelligent, knowledgeable, wise and polite. {user}{interface} french revolution what year {bot}{interface} The French Revolution started in 1789, and lasted 10 years until 1799. {user}{interface} 3+5=? {bot}{interface} The answer is 8. {user}{interface} guess i marry who ? {bot}{interface} Only if you tell me more about yourself - what are your interests? {user}{interface} solve for a: 9-a=2 {bot}{interface} The answer is a = 7, because 9 - 7 = 2. {user}{interface} what is lhc {bot}{interface} LHC is a high-energy particle collider, built by CERN, and completed in 2008. They used it to confirm the existence of the Higgs boson in 2012. ''' else: user = "Bob" bot = "Alice" init_prompt = f''' The following is a verbose detailed conversation between {user} and a young girl {bot}. {bot} is intelligent, friendly and cute. {bot} is likely to agree with {user}. {user}{interface} Hello {bot}, how are you doing? {bot}{interface} Hi {user}! Thanks, I'm fine. What about you? {user}{interface} I am very good! It's nice to see you. Would you mind me chatting with you for a while? {bot}{interface} Not at all! I'm listening. ''' elif CHAT_LANG == 'Chinese': interface = ":" if QA_PROMPT: user = "Q" bot = "A" init_prompt = f''' Expert Questions & Helpful Answers Ask Research Experts ''' else: user = "Bob" bot = "Alice" init_prompt = f''' The following is a verbose and detailed conversation between an AI assistant called {bot}, and a human user called {user}. {bot} is intelligent, knowledgeable, wise and polite. {user}{interface} what is lhc {bot}{interface} LHC is a high-energy particle collider, built by CERN, and completed in 2008. They used it to confirm the existence of the Higgs boson in 2012. {user}{interface} 企鹅会飞吗 {bot}{interface} 企鹅是不会飞的。它们的翅膀主要用于游泳和平衡,而不是飞行。 ''' FREE_GEN_LEN: int = 100 # Sampling settings. GEN_TEMP: float = 0.8 # It could be a good idea to increase temp when top_p is low GEN_TOP_P: float = 0.5 # Reduce top_p (to 0.5, 0.2, 0.1 etc.) for better Q&A accuracy (and less diversity) # ================================================================================================= parser = argparse.ArgumentParser(description='Provide terminal-based chat interface for RWKV model') parser.add_argument('model_path', help='Path to RWKV model in ggml format') args = parser.parse_args() assert init_prompt != '', 'Prompt must not be empty' print('Loading 20B tokenizer') tokenizer_path = pathlib.Path(os.path.abspath(__file__)).parent / '20B_tokenizer.json' tokenizer = tokenizers.Tokenizer.from_file(str(tokenizer_path)) library = rwkv_cpp_shared_library.load_rwkv_shared_library() print(f'System info: {library.rwkv_get_system_info_string()}') print('Loading RWKV model') model = rwkv_cpp_model.RWKVModel(library, args.model_path) prompt_tokens = tokenizer.encode(init_prompt).ids prompt_token_count = len(prompt_tokens) print(f'Processing {prompt_token_count} prompt tokens, may take a while') ######################################################################################################## def run_rnn(tokens: List[int]): global model_tokens, model_state, logits tokens = [int(x) for x in tokens] model_tokens += tokens for token in tokens: logits, model_state = model.eval(token, model_state, model_state, logits) return logits all_state = {} def save_all_stat(thread: str, last_out): n = f'{thread}' all_state[n] = {} all_state[n]['logits'] = copy.deepcopy(last_out) all_state[n]['rnn'] = copy.deepcopy(model_state) all_state[n]['token'] = copy.deepcopy(model_tokens) def load_all_stat(thread: str): global model_tokens, model_state n = f'{thread}' model_state = copy.deepcopy(all_state[n]['rnn']) model_tokens = copy.deepcopy(all_state[n]['token']) return copy.deepcopy(all_state[n]['logits']) ######################################################################################################## model_tokens = [] logits, model_state = None, None for token in prompt_tokens: logits, model_state = model.eval(token, model_state, model_state, logits) model_tokens.append(token) save_all_stat('chat_init', logits) print('\nChat initialized! Write something and press Enter.') save_all_stat('chat', logits) while True: # Read user input user_input = input(f'> {user}{interface} ') msg = user_input.replace('\\n','\n').strip() temperature = GEN_TEMP top_p = GEN_TOP_P if ("-temp=" in msg): temperature = float(msg.split("-temp=")[1].split(" ")[0]) msg = msg.replace("-temp="+f'{temperature:g}', "") # print(f"temp: {temperature}") if ("-top_p=" in msg): top_p = float(msg.split("-top_p=")[1].split(" ")[0]) msg = msg.replace("-top_p="+f'{top_p:g}', "") # print(f"top_p: {top_p}") if temperature <= 0.2: temperature = 0.2 if temperature >= 5: temperature = 5 if top_p <= 0: top_p = 0 msg = msg.strip() # + reset --> reset chat if msg == '+reset': logits = load_all_stat('chat_init') save_all_stat('chat', logits) print(f'{bot}{interface} "Chat reset."\n') continue elif msg[:5].lower() == '+gen ' or msg[:3].lower() == '+i ' or msg[:4].lower() == '+qa ' or msg[:4].lower() == '+qq ' or msg.lower() == '+++' or msg.lower() == '++': # +gen YOUR PROMPT --> free single-round generation with any prompt. Requires Novel model. if msg[:5].lower() == '+gen ': new = '\n' + msg[5:].strip() # print(f'### prompt ###\n[{new}]') model_state = None model_tokens = [] logits = run_rnn(tokenizer.encode(new).ids) save_all_stat('gen_0', logits) # +i YOUR INSTRUCT --> free single-round generation with any instruct. Requires Raven model. elif msg[:3].lower() == '+i ': new = f''' Below is an instruction that describes a task. Write a response that appropriately completes the request. # Instruction: {msg[3:].strip()} # Response: ''' # print(f'### prompt ###\n[{new}]') model_state = None model_tokens = [] logits = run_rnn(tokenizer.encode(new).ids) save_all_stat('gen_0', logits) # +qq YOUR QUESTION --> answer an independent question with more creativity (regardless of context). elif msg[:4].lower() == '+qq ': new = '\nQ: ' + msg[4:].strip() + '\nA:' # print(f'### prompt ###\n[{new}]') model_state = None model_tokens = [] logits = run_rnn(tokenizer.encode(new).ids) save_all_stat('gen_0', logits) # +qa YOUR QUESTION --> answer an independent question (regardless of context). elif msg[:4].lower() == '+qa ': logits = load_all_stat('chat_init') real_msg = msg[4:].strip() new = f"{user}{interface} {real_msg}\n\n{bot}{interface}" # print(f'### qa ###\n[{new}]') logits = run_rnn(tokenizer.encode(new).ids) save_all_stat('gen_0', logits) # +++ --> continue last free generation (only for +gen / +i) elif msg.lower() == '+++': try: logits = load_all_stat('gen_1') save_all_stat('gen_0', logits) except Exception as e: print(e) continue # ++ --> retry last free generation (only for +gen / +i) elif msg.lower() == '++': try: logits = load_all_stat('gen_0') except Exception as e: print(e) continue thread = "gen_1" else: # + --> alternate chat reply if msg.lower() == '+': try: logits = load_all_stat('chat_pre') except Exception as e: print(e) continue # chat with bot else: logits = load_all_stat('chat') new = f"{user}{interface} {msg}\n\n{bot}{interface}" # print(f'### add ###\n[{new}]') logits = run_rnn(tokenizer.encode(new).ids) save_all_stat('chat_pre', logits) thread = 'chat' # Print bot response print(f"> {bot}{interface}", end='') decoded = '' begin = len(model_tokens) out_last = begin for i in range(FREE_GEN_LEN): token = sampling.sample_logits(logits, temperature, top_p) logits = run_rnn([token]) decoded = tokenizer.decode(model_tokens[out_last:]) if '\ufffd' not in decoded: # avoid utf-8 display issues print(decoded, end='', flush=True) out_last = begin + i + 1 if thread == 'chat': send_msg = tokenizer.decode(model_tokens[begin:]) if '\n\n' in send_msg: send_msg = send_msg.strip() break if i == FREE_GEN_LEN - 1: print() save_all_stat(thread, logits)