diff --git a/README.md b/README.md index 5283b5f..9c571cf 100644 --- a/README.md +++ b/README.md @@ -8,30 +8,48 @@ RWKV is a novel large language model architecture, [with the largest model in th This project provides [a C library rwkv.h](rwkv.h) and [a convinient Python wrapper](rwkv%2Frwkv_cpp_model.py) for it. -**TODO**: +**TODO (contributions welcome!)**: -1. Measure performance and perplexity of different model sizes and data types -2. Write a good `README.md` (motivation, benchmarks, perplexity) and publish links to this repo -3. Create pull request to main `ggml` repo with all improvements made here +1. Measure latency and perplexity of different model sizes (169M to 14B) and data types (FP32, FP16, Q4_0, Q4_1) +2. Test on Linux (including Colab) and MacOS +3. Make required memory calculation more robust (see #4) ## How to use -### 1. Clone the repo and build the library +### 1. Clone the repo -### Windows - -**Requirements**: [git](https://gitforwindows.org/), [CMake](https://cmake.org/download/), MSVC compiler. +**Requirements**: [git](https://gitforwindows.org/). ```commandline git clone https://github.com/saharNooby/rwkv.cpp.git cd rwkv.cpp +``` + +### 2. Get the rwkv.cpp library + +#### Option 2.1. Download a pre-compiled library + +##### Windows + +Check out [Releases](https://github.com/saharNooby/rwkv.cpp/releases), download appropriate ZIP for your CPU, extract `rwkv.dll` file into `bin\Release\` directory inside the repository directory. + +To check whether your CPU supports AVX2 or AVX-512, [use CPU-Z](https://www.cpuid.com/softwares/cpu-z.html). + +#### Option 2.2. Build the library yourself + +##### Windows + +**Requirements**: [CMake](https://cmake.org/download/), MSVC compiler. + +```commandline cmake -DBUILD_SHARED_LIBS=ON . cmake --build . --config Release ``` If everything went OK, `bin\Release\rwkv.dll` file should appear. -### 2. Download an RWKV model from [Hugging Face](https://huggingface.co/BlinkDL) like [this one](https://huggingface.co/BlinkDL/rwkv-4-pile-169m/blob/main/RWKV-4-Pile-169M-20220807-8023.pth) and convert it into `ggml` format +### 3. Download an RWKV model from [Hugging Face](https://huggingface.co/BlinkDL) like [this one](https://huggingface.co/BlinkDL/rwkv-4-pile-169m/blob/main/RWKV-4-Pile-169M-20220807-8023.pth) and convert it into `ggml` format + **Requirements**: Python 3.x with [PyTorch](https://pytorch.org/get-started/locally/). ```commandline @@ -41,7 +59,7 @@ python rwkv\convert_rwkv_to_ggml.py C:\RWKV-4b-Pile-169M-20220807-8023.pth C:\rw python rwkv/convert_pytorch_to_ggml.py ~/Downloads/RWKV-4b-Pile-169M-20220807-8023.pth ~/Downloads/rwkv.cpp-169M.bin float32 ``` -#### 2.1. Optionally, quantize the model +#### 3.1. Optionally, quantize the model To convert the model into INT4 quantized format, run: @@ -54,7 +72,7 @@ python rwkv/quantize.py ~/Downloads/rwkv.cpp-169M.bin ~/Downloads/rwkv.cpp-169M- Pass `2` for `Q4_0` format (smaller size, lower quality), `3` for `Q4_1` format (larger size, higher quality). -### 3. Run the model +### 4. Run the model **Requirements**: Python 3.x with [PyTorch](https://pytorch.org/get-started/locally/) and [tokenizers](https://pypi.org/project/tokenizers/). diff --git a/rwkv.cpp b/rwkv.cpp index e228e57..ede0791 100644 --- a/rwkv.cpp +++ b/rwkv.cpp @@ -183,8 +183,9 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr size_t(2) * 5 * model->n_layer * model->n_embed * sizeof(float) + // Logits size_t(model->n_vocab) * sizeof(float) + - // +32 MB just for any overhead - size_t(32) * 1024 * 1024; + // +256 MB just for any overhead + // TODO This is too much for smaller models; need a more proper and robust way of measuring required memory + size_t(256) * 1024 * 1024; // Initialize ggml struct ggml_init_params params;