Use ggml as a submodule
This commit is contained in:
parent
a96ec01b1a
commit
b2bdeb1d95
|
@ -0,0 +1,3 @@
|
||||||
|
[submodule "ggml"]
|
||||||
|
path = ggml
|
||||||
|
url = https://github.com/saharNooby/ggml
|
|
@ -222,13 +222,8 @@ endif()
|
||||||
# Build libraries
|
# Build libraries
|
||||||
#
|
#
|
||||||
|
|
||||||
add_library(ggml OBJECT
|
add_subdirectory(ggml)
|
||||||
ggml.c
|
|
||||||
ggml.h)
|
|
||||||
|
|
||||||
target_include_directories(ggml PUBLIC .)
|
|
||||||
target_compile_features(ggml PUBLIC c_std_11) # don't bump
|
|
||||||
target_link_libraries(ggml PRIVATE Threads::Threads ${RWKV_EXTRA_LIBS})
|
|
||||||
if (BUILD_SHARED_LIBS)
|
if (BUILD_SHARED_LIBS)
|
||||||
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
set_target_properties(ggml PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||||
endif()
|
endif()
|
||||||
|
|
|
@ -0,0 +1 @@
|
||||||
|
Subproject commit bcf387f6049fc0a7823746b933c0a42fad7d383a
|
840
ggml.h
840
ggml.h
|
@ -1,840 +0,0 @@
|
||||||
#pragma once
|
|
||||||
|
|
||||||
//
|
|
||||||
// GGML Tensor Library
|
|
||||||
//
|
|
||||||
// This documentation is still a work in progress.
|
|
||||||
// If you wish some specific topics to be covered, feel free to drop a comment:
|
|
||||||
//
|
|
||||||
// https://github.com/ggerganov/whisper.cpp/issues/40
|
|
||||||
//
|
|
||||||
// ## Overview
|
|
||||||
//
|
|
||||||
// This library implements:
|
|
||||||
//
|
|
||||||
// - a set of tensor operations
|
|
||||||
// - automatic differentiation
|
|
||||||
// - basic optimization algorithms
|
|
||||||
//
|
|
||||||
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
|
||||||
// but is not limited to, the following:
|
|
||||||
//
|
|
||||||
// - linear regression
|
|
||||||
// - support vector machines
|
|
||||||
// - neural networks
|
|
||||||
//
|
|
||||||
// The library allows the user to define a certain function using the available tensor operations. This function
|
|
||||||
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
|
||||||
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
|
||||||
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
|
||||||
// using one of the available optimization algorithms.
|
|
||||||
//
|
|
||||||
// For example, here we define the function: f(x) = a*x^2 + b
|
|
||||||
//
|
|
||||||
// {
|
|
||||||
// struct ggml_init_params params = {
|
|
||||||
// .mem_size = 16*1024*1024,
|
|
||||||
// .mem_buffer = NULL,
|
|
||||||
// };
|
|
||||||
//
|
|
||||||
// // memory allocation happens here
|
|
||||||
// struct ggml_context * ctx = ggml_init(params);
|
|
||||||
//
|
|
||||||
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
||||||
//
|
|
||||||
// ggml_set_param(ctx, x); // x is an input variable
|
|
||||||
//
|
|
||||||
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
||||||
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
|
||||||
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
|
||||||
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
|
||||||
//
|
|
||||||
// ...
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
|
||||||
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
|
||||||
//
|
|
||||||
// {
|
|
||||||
// ...
|
|
||||||
//
|
|
||||||
// struct ggml_cgraph gf = ggml_build_forward(f);
|
|
||||||
//
|
|
||||||
// // set the input variable and parameter values
|
|
||||||
// ggml_set_f32(x, 2.0f);
|
|
||||||
// ggml_set_f32(a, 3.0f);
|
|
||||||
// ggml_set_f32(b, 4.0f);
|
|
||||||
//
|
|
||||||
// ggml_graph_compute(ctx0, &gf);
|
|
||||||
//
|
|
||||||
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
|
||||||
//
|
|
||||||
// ...
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// The actual computation is performed in the ggml_graph_compute() function.
|
|
||||||
//
|
|
||||||
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
|
||||||
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
|
||||||
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
|
||||||
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
|
||||||
// actually needed.
|
|
||||||
//
|
|
||||||
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
|
||||||
// differentiation and optimization algorithms.
|
|
||||||
//
|
|
||||||
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
|
||||||
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
|
||||||
// the user can avoid the memory allocation overhead at runtime.
|
|
||||||
//
|
|
||||||
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
|
||||||
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
|
||||||
//
|
|
||||||
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
|
||||||
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
|
||||||
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
|
||||||
// yet, but a few examples are demonstrated in the following operations:
|
|
||||||
//
|
|
||||||
// - ggml_permute()
|
|
||||||
// - ggml_conv_1d_1s()
|
|
||||||
// - ggml_conv_1d_2s()
|
|
||||||
//
|
|
||||||
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
|
||||||
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
|
||||||
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
|
||||||
// calculus class, or watch the following video:
|
|
||||||
//
|
|
||||||
// What is Automatic Differentiation?
|
|
||||||
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ## Tensor data (struct ggml_tensor)
|
|
||||||
//
|
|
||||||
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
|
||||||
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
|
||||||
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
|
||||||
//
|
|
||||||
// {
|
|
||||||
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
|
||||||
//
|
|
||||||
// assert(c->src[0] == a);
|
|
||||||
// assert(c->src[1] == b);
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
|
||||||
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
|
||||||
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
|
||||||
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
|
||||||
// contiguous in memory.
|
|
||||||
//
|
|
||||||
// The data of the tensor is accessed via the "data" pointer. For example:
|
|
||||||
//
|
|
||||||
// {
|
|
||||||
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
|
|
||||||
//
|
|
||||||
// // a[1, 2] = 1.0f;
|
|
||||||
// *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
|
|
||||||
//
|
|
||||||
// // a[2, 0] = 2.0f;
|
|
||||||
// *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
|
|
||||||
//
|
|
||||||
// ...
|
|
||||||
// }
|
|
||||||
//
|
|
||||||
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
|
||||||
//
|
|
||||||
// ## The matrix multiplication operator (ggml_mul_mat)
|
|
||||||
//
|
|
||||||
// TODO
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ## Multi-threading
|
|
||||||
//
|
|
||||||
// TODO
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ## Overview of ggml.c
|
|
||||||
//
|
|
||||||
// TODO
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ## SIMD optimizations
|
|
||||||
//
|
|
||||||
// TODO
|
|
||||||
//
|
|
||||||
//
|
|
||||||
// ## Debugging ggml
|
|
||||||
//
|
|
||||||
// TODO
|
|
||||||
//
|
|
||||||
// ## Adding new operators
|
|
||||||
//
|
|
||||||
// Suppose you want to add e^x unary operator. Following steps need to be done:
|
|
||||||
//
|
|
||||||
// In `ggml.h`:
|
|
||||||
//
|
|
||||||
// 1. Add member `GGML_OP_EXP` to `ggml_op` enum.
|
|
||||||
// 2. Declare the operator function: `struct ggml_tensor * ggml_exp(struct ggml_context * ctx, struct ggml_tensor * x);`.
|
|
||||||
//
|
|
||||||
// In `ggml.c`:
|
|
||||||
//
|
|
||||||
// 1. Implement `ggml_exp` function: it will create result tensor and set its' operator and arguments.
|
|
||||||
// 2. Create forward computation function for FP32: `ggml_compute_forward_exp_f32`: it will do the actual computation.
|
|
||||||
// 3. If needed, create forward computation functions for other types: FP16, INT32, etc.
|
|
||||||
// 4. Create forward dispatch function `ggml_compute_forward_exp`: it would dispatch the call based on tensor data type.
|
|
||||||
// 5. Add `case GGML_OP_EXP`:
|
|
||||||
// - to `ggml_compute_forward` and call the forward dispatch function here.
|
|
||||||
// - to `ggml_compute_backward` and add `GGML_ASSERT(false)` here.
|
|
||||||
// - to `ggml_graph_compute` and add `node->n_tasks = 1` here.
|
|
||||||
// 6. Add operator label to `GGML_OP_LABEL` array and operator symbol to `GGML_OP_SYMBOL` array.
|
|
||||||
// 7. Fix all assertions that check value of `GGML_OP_COUNT`: you've added 1 operator, so increment asserted value by one.
|
|
||||||
//
|
|
||||||
// When in doubt, consult the code of existing operators similar to that you're implementing.
|
|
||||||
// Resulting operator would work for the forward pass, but will lack backward implementation and multi-threading support.
|
|
||||||
//
|
|
||||||
// TODO Implementing backward pass
|
|
||||||
// TODO Implementing multi-threading
|
|
||||||
//
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
extern "C" {
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#include <stdint.h>
|
|
||||||
#include <stddef.h>
|
|
||||||
#include <stdbool.h>
|
|
||||||
|
|
||||||
#define GGML_MAX_DIMS 4
|
|
||||||
#define GGML_MAX_NODES 4096
|
|
||||||
#define GGML_MAX_PARAMS 16
|
|
||||||
#define GGML_MAX_CONTEXTS 64
|
|
||||||
#define GGML_MAX_OPT 4
|
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
|
||||||
// we use the built-in 16-bit float type
|
|
||||||
typedef __fp16 ggml_fp16_t;
|
|
||||||
#else
|
|
||||||
typedef uint16_t ggml_fp16_t;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// convert FP16 <-> FP32
|
|
||||||
float ggml_fp16_to_fp32(ggml_fp16_t x);
|
|
||||||
ggml_fp16_t ggml_fp32_to_fp16(float x);
|
|
||||||
|
|
||||||
struct ggml_object;
|
|
||||||
struct ggml_context;
|
|
||||||
|
|
||||||
enum ggml_type {
|
|
||||||
GGML_TYPE_Q4_0,
|
|
||||||
// Stores min and delta per block, does quantized matmul.
|
|
||||||
GGML_TYPE_Q4_1,
|
|
||||||
// Same as Q4_1, but stores outliers separately, and matmul is done in FP32.
|
|
||||||
// An outlier is the single absmax element in the quantized block.
|
|
||||||
GGML_TYPE_Q4_1_O,
|
|
||||||
GGML_TYPE_I8,
|
|
||||||
GGML_TYPE_I16,
|
|
||||||
GGML_TYPE_I32,
|
|
||||||
GGML_TYPE_F16,
|
|
||||||
GGML_TYPE_F32,
|
|
||||||
GGML_TYPE_COUNT,
|
|
||||||
};
|
|
||||||
|
|
||||||
// available tensor operations:
|
|
||||||
enum ggml_op {
|
|
||||||
GGML_OP_NONE = 0,
|
|
||||||
|
|
||||||
GGML_OP_DUP,
|
|
||||||
GGML_OP_ADD,
|
|
||||||
GGML_OP_SUB,
|
|
||||||
GGML_OP_MUL,
|
|
||||||
GGML_OP_DIV,
|
|
||||||
GGML_OP_SQR,
|
|
||||||
GGML_OP_SQRT,
|
|
||||||
GGML_OP_SUM,
|
|
||||||
GGML_OP_MEAN,
|
|
||||||
GGML_OP_REPEAT,
|
|
||||||
GGML_OP_ABS,
|
|
||||||
GGML_OP_SGN,
|
|
||||||
GGML_OP_NEG,
|
|
||||||
// Element-wise exponential function `e^x`.
|
|
||||||
// Same as `torch.exp(x)` from PyTorch.
|
|
||||||
GGML_OP_EXP,
|
|
||||||
// Element-wise `1 - x`.
|
|
||||||
GGML_OP_1_MINUS_X,
|
|
||||||
|
|
||||||
// Element-wise maximum of 2 values. Argument shapes must match.
|
|
||||||
// Same as `torch.maximum(x)` from PyTorch.
|
|
||||||
GGML_OP_MAX,
|
|
||||||
|
|
||||||
GGML_OP_STEP,
|
|
||||||
GGML_OP_RELU,
|
|
||||||
GGML_OP_GELU,
|
|
||||||
// Element-wise sigmoid activation `1 / (1 + e^-x)`, also called logistic function.
|
|
||||||
// Same as `torch.sigmoid(x)` from PyTorch.
|
|
||||||
GGML_OP_SIGMOID,
|
|
||||||
GGML_OP_SILU,
|
|
||||||
GGML_OP_NORM, // normalize
|
|
||||||
GGML_OP_RMS_NORM,
|
|
||||||
|
|
||||||
GGML_OP_MUL_MAT,
|
|
||||||
|
|
||||||
GGML_OP_SCALE,
|
|
||||||
GGML_OP_CPY,
|
|
||||||
GGML_OP_RESHAPE,
|
|
||||||
GGML_OP_VIEW,
|
|
||||||
GGML_OP_PERMUTE,
|
|
||||||
GGML_OP_TRANSPOSE,
|
|
||||||
GGML_OP_GET_ROWS,
|
|
||||||
GGML_OP_DIAG_MASK_INF,
|
|
||||||
GGML_OP_SOFT_MAX,
|
|
||||||
GGML_OP_ROPE,
|
|
||||||
GGML_OP_CONV_1D_1S,
|
|
||||||
GGML_OP_CONV_1D_2S,
|
|
||||||
|
|
||||||
GGML_OP_FLASH_ATTN,
|
|
||||||
GGML_OP_FLASH_FF,
|
|
||||||
|
|
||||||
GGML_OP_COUNT,
|
|
||||||
};
|
|
||||||
|
|
||||||
// n-dimensional tensor
|
|
||||||
struct ggml_tensor {
|
|
||||||
enum ggml_type type;
|
|
||||||
|
|
||||||
int n_dims;
|
|
||||||
int ne[GGML_MAX_DIMS]; // number of elements
|
|
||||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
|
||||||
// nb[0] = sizeof(type)
|
|
||||||
// nb[1] = nb[0] * ne[0] + padding
|
|
||||||
// nb[i] = nb[i-1] * ne[i-1]
|
|
||||||
|
|
||||||
// compute data
|
|
||||||
enum ggml_op op;
|
|
||||||
|
|
||||||
bool is_param;
|
|
||||||
|
|
||||||
struct ggml_tensor * grad;
|
|
||||||
struct ggml_tensor * src0;
|
|
||||||
struct ggml_tensor * src1;
|
|
||||||
struct ggml_tensor * opt[GGML_MAX_OPT];
|
|
||||||
|
|
||||||
// thread scheduling
|
|
||||||
int n_tasks;
|
|
||||||
|
|
||||||
// performance
|
|
||||||
int perf_runs;
|
|
||||||
int64_t perf_cycles;
|
|
||||||
int64_t perf_time_us;
|
|
||||||
|
|
||||||
void * data;
|
|
||||||
char padding[8];
|
|
||||||
};
|
|
||||||
|
|
||||||
// computation graph
|
|
||||||
struct ggml_cgraph {
|
|
||||||
int n_nodes;
|
|
||||||
int n_leafs;
|
|
||||||
int n_threads;
|
|
||||||
|
|
||||||
size_t work_size;
|
|
||||||
struct ggml_tensor * work;
|
|
||||||
|
|
||||||
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
|
||||||
struct ggml_tensor * grads[GGML_MAX_NODES];
|
|
||||||
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
|
||||||
|
|
||||||
// performance
|
|
||||||
int perf_runs;
|
|
||||||
int64_t perf_cycles;
|
|
||||||
int64_t perf_time_us;
|
|
||||||
};
|
|
||||||
|
|
||||||
// scratch buffer
|
|
||||||
struct ggml_scratch {
|
|
||||||
size_t offs;
|
|
||||||
size_t size;
|
|
||||||
void * data;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct ggml_init_params {
|
|
||||||
// memory pool
|
|
||||||
size_t mem_size; // bytes
|
|
||||||
void * mem_buffer; // if NULL, memory will be allocated internally
|
|
||||||
};
|
|
||||||
|
|
||||||
void ggml_time_init(void); // call this once at the beginning of the program
|
|
||||||
int64_t ggml_time_ms(void);
|
|
||||||
int64_t ggml_time_us(void);
|
|
||||||
int64_t ggml_cycles(void);
|
|
||||||
int64_t ggml_cycles_per_ms(void);
|
|
||||||
|
|
||||||
void ggml_print_object (const struct ggml_object * obj);
|
|
||||||
void ggml_print_objects(const struct ggml_context * ctx);
|
|
||||||
|
|
||||||
int ggml_nelements(const struct ggml_tensor * tensor);
|
|
||||||
size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
int ggml_blck_size (enum ggml_type type);
|
|
||||||
size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
|
|
||||||
float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
|
|
||||||
|
|
||||||
size_t ggml_element_size(const struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
struct ggml_context * ggml_init(struct ggml_init_params params);
|
|
||||||
void ggml_free(struct ggml_context * ctx);
|
|
||||||
|
|
||||||
size_t ggml_used_mem(const struct ggml_context * ctx);
|
|
||||||
|
|
||||||
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch);
|
|
||||||
|
|
||||||
bool ggml_mlock_supported(void);
|
|
||||||
bool ggml_mlock(struct ggml_context * ctx, char ** err_p);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_tensor(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
enum ggml_type type,
|
|
||||||
int n_dims,
|
|
||||||
const int *ne);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_tensor_1d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
enum ggml_type type,
|
|
||||||
int ne0);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_tensor_2d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
enum ggml_type type,
|
|
||||||
int ne0,
|
|
||||||
int ne1);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_tensor_3d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
enum ggml_type type,
|
|
||||||
int ne0,
|
|
||||||
int ne1,
|
|
||||||
int ne2);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_tensor_4d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
enum ggml_type type,
|
|
||||||
int ne0,
|
|
||||||
int ne1,
|
|
||||||
int ne2,
|
|
||||||
int ne3);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
|
||||||
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
||||||
struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
|
||||||
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
|
||||||
struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
|
||||||
|
|
||||||
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
|
||||||
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
|
||||||
|
|
||||||
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
|
||||||
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
|
||||||
|
|
||||||
void * ggml_get_data (const struct ggml_tensor * tensor);
|
|
||||||
float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
//
|
|
||||||
// operations on tensors with backpropagation
|
|
||||||
//
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_dup(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_add(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_sub(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_mul(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_div(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_sqr(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_sqrt(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// return scalar
|
|
||||||
// TODO: compute sum along rows
|
|
||||||
struct ggml_tensor * ggml_sum(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// mean along rows
|
|
||||||
struct ggml_tensor * ggml_mean(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// if a is the same shape as b, and a is not parameter, return a
|
|
||||||
// otherwise, return a new tensor: repeat(a) to fit in b
|
|
||||||
struct ggml_tensor * ggml_repeat(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_abs(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_sgn(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_neg(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_exp(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_1_minus_x(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_max(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_step(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_relu(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// TODO: double-check this computation is correct
|
|
||||||
struct ggml_tensor * ggml_gelu(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_sigmoid(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_silu(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// normalize along rows
|
|
||||||
// TODO: eps is hardcoded to 1e-5 for now
|
|
||||||
struct ggml_tensor * ggml_norm(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_rms_norm(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// A: m rows, n columns
|
|
||||||
// B: p rows, n columns (i.e. we transpose it internally)
|
|
||||||
// result is m columns, p rows
|
|
||||||
struct ggml_tensor * ggml_mul_mat(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
//
|
|
||||||
// operations on tensors without backpropagation
|
|
||||||
//
|
|
||||||
|
|
||||||
// in-place, returns view(a)
|
|
||||||
struct ggml_tensor * ggml_scale(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
// a -> b, return view(b)
|
|
||||||
struct ggml_tensor * ggml_cpy(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
// return view(a), b specifies the new shape
|
|
||||||
// TODO: when we start computing gradient, make a copy instead of view
|
|
||||||
struct ggml_tensor * ggml_reshape(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
// return view(a)
|
|
||||||
// TODO: when we start computing gradient, make a copy instead of view
|
|
||||||
struct ggml_tensor * ggml_reshape_2d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int ne0,
|
|
||||||
int ne1);
|
|
||||||
|
|
||||||
// return view(a)
|
|
||||||
// TODO: when we start computing gradient, make a copy instead of view
|
|
||||||
struct ggml_tensor * ggml_reshape_3d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int ne0,
|
|
||||||
int ne1,
|
|
||||||
int ne2);
|
|
||||||
|
|
||||||
// offset in bytes
|
|
||||||
struct ggml_tensor * ggml_view_1d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int ne0,
|
|
||||||
size_t offset);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_view_2d(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int ne0,
|
|
||||||
int ne1,
|
|
||||||
size_t nb1, // row stride in bytes
|
|
||||||
size_t offset);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_permute(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int axis0,
|
|
||||||
int axis1,
|
|
||||||
int axis2,
|
|
||||||
int axis3);
|
|
||||||
|
|
||||||
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
|
||||||
struct ggml_tensor * ggml_transpose(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_get_rows(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
// set elements above the diagonal to -INF
|
|
||||||
// in-place, returns view(a)
|
|
||||||
struct ggml_tensor * ggml_diag_mask_inf(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int n_past);
|
|
||||||
|
|
||||||
// in-place, returns view(a)
|
|
||||||
struct ggml_tensor * ggml_soft_max(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a);
|
|
||||||
|
|
||||||
// rotary position embedding
|
|
||||||
// in-place, returns view(a)
|
|
||||||
// if mode == 1, skip n_past elements
|
|
||||||
// TODO: avoid creating a new tensor every time
|
|
||||||
struct ggml_tensor * ggml_rope(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
int n_past,
|
|
||||||
int n_dims,
|
|
||||||
int mode);
|
|
||||||
|
|
||||||
// padding = 1
|
|
||||||
// TODO: we don't support extra parameters for now
|
|
||||||
// that's why we are hard-coding the stride, padding, and dilation
|
|
||||||
// not great ..
|
|
||||||
struct ggml_tensor * ggml_conv_1d_1s(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_conv_1d_2s(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_attn(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * q,
|
|
||||||
struct ggml_tensor * k,
|
|
||||||
struct ggml_tensor * v,
|
|
||||||
bool masked);
|
|
||||||
|
|
||||||
struct ggml_tensor * ggml_flash_ff(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * b0,
|
|
||||||
struct ggml_tensor * b1,
|
|
||||||
struct ggml_tensor * c0,
|
|
||||||
struct ggml_tensor * c1);
|
|
||||||
|
|
||||||
//
|
|
||||||
// automatic differentiation
|
|
||||||
//
|
|
||||||
|
|
||||||
void ggml_set_param(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
|
||||||
|
|
||||||
struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
|
||||||
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
|
||||||
|
|
||||||
void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
|
||||||
void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
|
||||||
|
|
||||||
// print info and performance information for the graph
|
|
||||||
void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
|
||||||
|
|
||||||
// dump the graph into a file using the dot format
|
|
||||||
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
|
||||||
|
|
||||||
//
|
|
||||||
// optimization
|
|
||||||
//
|
|
||||||
|
|
||||||
// optimization methods
|
|
||||||
enum ggml_opt_type {
|
|
||||||
GGML_OPT_ADAM,
|
|
||||||
GGML_OPT_LBFGS,
|
|
||||||
};
|
|
||||||
|
|
||||||
// linesearch methods
|
|
||||||
enum ggml_linesearch {
|
|
||||||
GGML_LINESEARCH_DEFAULT = 1,
|
|
||||||
|
|
||||||
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
|
||||||
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
|
||||||
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
|
||||||
};
|
|
||||||
|
|
||||||
// optimization return values
|
|
||||||
enum ggml_opt_result {
|
|
||||||
GGML_OPT_OK = 0,
|
|
||||||
GGML_OPT_DID_NOT_CONVERGE,
|
|
||||||
GGML_OPT_NO_CONTEXT,
|
|
||||||
GGML_OPT_INVALID_WOLFE,
|
|
||||||
GGML_OPT_FAIL,
|
|
||||||
|
|
||||||
GGML_LINESEARCH_FAIL = -128,
|
|
||||||
GGML_LINESEARCH_MINIMUM_STEP,
|
|
||||||
GGML_LINESEARCH_MAXIMUM_STEP,
|
|
||||||
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
|
||||||
GGML_LINESEARCH_INVALID_PARAMETERS,
|
|
||||||
};
|
|
||||||
|
|
||||||
// optimization parameters
|
|
||||||
//
|
|
||||||
// see ggml.c (ggml_opt_default_params) for default values
|
|
||||||
//
|
|
||||||
struct ggml_opt_params {
|
|
||||||
enum ggml_opt_type type;
|
|
||||||
|
|
||||||
int n_threads;
|
|
||||||
|
|
||||||
// delta-based convergence test
|
|
||||||
//
|
|
||||||
// if past == 0 - disabled
|
|
||||||
// if past > 0:
|
|
||||||
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
|
||||||
//
|
|
||||||
int past;
|
|
||||||
float delta;
|
|
||||||
|
|
||||||
// maximum number of iterations without improvement
|
|
||||||
//
|
|
||||||
// if 0 - disabled
|
|
||||||
// if > 0:
|
|
||||||
// assume convergence if no cost improvement in this number of iterations
|
|
||||||
//
|
|
||||||
int max_no_improvement;
|
|
||||||
|
|
||||||
bool print_forward_graph;
|
|
||||||
bool print_backward_graph;
|
|
||||||
|
|
||||||
// ADAM parameters
|
|
||||||
struct {
|
|
||||||
int n_iter;
|
|
||||||
|
|
||||||
float alpha; // learning rate
|
|
||||||
float beta1;
|
|
||||||
float beta2;
|
|
||||||
float eps; // epsilon for numerical stability
|
|
||||||
float eps_f; // epsilon for convergence test
|
|
||||||
float eps_g; // epsilon for convergence test
|
|
||||||
} adam;
|
|
||||||
|
|
||||||
// LBFGS parameters
|
|
||||||
struct {
|
|
||||||
int m; // number of corrections to approximate the inv. Hessian
|
|
||||||
int n_iter;
|
|
||||||
int max_linesearch;
|
|
||||||
|
|
||||||
float eps; // convergence tolerance
|
|
||||||
float ftol; // line search tolerance
|
|
||||||
float wolfe;
|
|
||||||
float min_step;
|
|
||||||
float max_step;
|
|
||||||
|
|
||||||
enum ggml_linesearch linesearch;
|
|
||||||
} lbfgs;
|
|
||||||
};
|
|
||||||
|
|
||||||
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
|
||||||
|
|
||||||
// optimize the function defined by the tensor f
|
|
||||||
enum ggml_opt_result ggml_opt(
|
|
||||||
struct ggml_context * ctx,
|
|
||||||
struct ggml_opt_params params,
|
|
||||||
struct ggml_tensor * f);
|
|
||||||
|
|
||||||
//
|
|
||||||
// quantization
|
|
||||||
//
|
|
||||||
|
|
||||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
||||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
||||||
size_t ggml_quantize_q4_1_o(const float * src, void * dst, int n, int k, int64_t * hist);
|
|
||||||
|
|
||||||
//
|
|
||||||
// system info
|
|
||||||
//
|
|
||||||
|
|
||||||
int ggml_cpu_has_avx(void);
|
|
||||||
int ggml_cpu_has_avx2(void);
|
|
||||||
int ggml_cpu_has_avx512(void);
|
|
||||||
int ggml_cpu_has_fma(void);
|
|
||||||
int ggml_cpu_has_neon(void);
|
|
||||||
int ggml_cpu_has_arm_fma(void);
|
|
||||||
int ggml_cpu_has_f16c(void);
|
|
||||||
int ggml_cpu_has_fp16_va(void);
|
|
||||||
int ggml_cpu_has_wasm_simd(void);
|
|
||||||
int ggml_cpu_has_blas(void);
|
|
||||||
int ggml_cpu_has_sse3(void);
|
|
||||||
int ggml_cpu_has_vsx(void);
|
|
||||||
|
|
||||||
// Run test suite for ggml.
|
|
||||||
// Exits normally, if all tests pass.
|
|
||||||
// Aborts the execution if any test did not pass.
|
|
||||||
void ggml_run_test_suite();
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
}
|
|
||||||
#endif
|
|
74
rwkv.cpp
74
rwkv.cpp
|
@ -48,7 +48,8 @@ static const ggml_type FORMAT_TYPE_TO_GGML_TYPE[5] = {
|
||||||
GGML_TYPE_F16,
|
GGML_TYPE_F16,
|
||||||
GGML_TYPE_Q4_0,
|
GGML_TYPE_Q4_0,
|
||||||
GGML_TYPE_Q4_1,
|
GGML_TYPE_Q4_1,
|
||||||
GGML_TYPE_Q4_1_O
|
// TODO Restore
|
||||||
|
//GGML_TYPE_Q4_1_O
|
||||||
};
|
};
|
||||||
|
|
||||||
// --- Model definition and loading utilities ---
|
// --- Model definition and loading utilities ---
|
||||||
|
@ -118,6 +119,46 @@ bool set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> *
|
||||||
|
|
||||||
// --- Operators ---
|
// --- Operators ---
|
||||||
|
|
||||||
|
void rwkv_exp_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = expf(src[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = 1.0 - src[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_sigmoid_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = 1.0 / (1.0F + expf(-src[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = fmaxf(src0[i], src1[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_exp(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_exp_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_1_minus_x(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_sigmoid(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_max(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y) {
|
||||||
|
return ggml_map_binary_f32(ctx, x, y, rwkv_max_impl);
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
||||||
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
||||||
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
||||||
|
@ -336,23 +377,23 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
struct ggml_tensor * xk = ggml_add(
|
struct ggml_tensor * xk = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
||||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_k))
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
|
||||||
);
|
);
|
||||||
struct ggml_tensor * xv = ggml_add(
|
struct ggml_tensor * xv = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
||||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_v))
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
|
||||||
);
|
);
|
||||||
struct ggml_tensor * xr = ggml_add(
|
struct ggml_tensor * xr = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
||||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_r))
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
|
||||||
);
|
);
|
||||||
// state[5 * i + 1] = x
|
// state[5 * i + 1] = x
|
||||||
state_parts[5 * i + 1] = x0;
|
state_parts[5 * i + 1] = x0;
|
||||||
|
|
||||||
// r = torch.sigmoid(rw @ xr)
|
// r = torch.sigmoid(rw @ xr)
|
||||||
struct ggml_tensor * r = ggml_sigmoid(
|
struct ggml_tensor * r = rwkv_sigmoid(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul_mat(ctx, layer.att_receptance, xr)
|
ggml_mul_mat(ctx, layer.att_receptance, xr)
|
||||||
);
|
);
|
||||||
|
@ -371,11 +412,11 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// ww = time_first + k
|
// ww = time_first + k
|
||||||
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
||||||
// qq = torch.maximum(pp, ww)
|
// qq = torch.maximum(pp, ww)
|
||||||
struct ggml_tensor * qq = ggml_max(ctx, pp, ww);
|
struct ggml_tensor * qq = rwkv_max(ctx, pp, ww);
|
||||||
// e1 = torch.exp(pp - qq)
|
// e1 = torch.exp(pp - qq)
|
||||||
struct ggml_tensor * e1 = ggml_exp(ctx, ggml_sub(ctx, pp, qq));
|
struct ggml_tensor * e1 = rwkv_exp(ctx, ggml_sub(ctx, pp, qq));
|
||||||
// e2 = torch.exp(ww - qq)
|
// e2 = torch.exp(ww - qq)
|
||||||
struct ggml_tensor * e2 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
struct ggml_tensor * e2 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||||
// a = e1 * aa + e2 * v
|
// a = e1 * aa + e2 * v
|
||||||
struct ggml_tensor * a = ggml_add(
|
struct ggml_tensor * a = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
|
@ -393,11 +434,11 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// ww = pp + time_decay
|
// ww = pp + time_decay
|
||||||
ww = ggml_add(ctx, pp, layer.att_time_decay);
|
ww = ggml_add(ctx, pp, layer.att_time_decay);
|
||||||
// qq = torch.maximum(ww, k)
|
// qq = torch.maximum(ww, k)
|
||||||
qq = ggml_max(ctx, ww, k);
|
qq = rwkv_max(ctx, ww, k);
|
||||||
// e1 = torch.exp(ww - qq)
|
// e1 = torch.exp(ww - qq)
|
||||||
e1 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
e1 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||||
// e2 = torch.exp(k - qq)
|
// e2 = torch.exp(k - qq)
|
||||||
e2 = ggml_exp(ctx, ggml_sub(ctx, k, qq));
|
e2 = rwkv_exp(ctx, ggml_sub(ctx, k, qq));
|
||||||
// state[5 * i + 2] = e1 * aa + e2 * v
|
// state[5 * i + 2] = e1 * aa + e2 * v
|
||||||
state_parts[5 * i + 2] = ggml_add(
|
state_parts[5 * i + 2] = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
|
@ -435,18 +476,18 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
struct ggml_tensor * xk = ggml_add(
|
struct ggml_tensor * xk = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
||||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_k))
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
|
||||||
);
|
);
|
||||||
struct ggml_tensor * xr = ggml_add(
|
struct ggml_tensor * xr = ggml_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
||||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_r))
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
|
||||||
);
|
);
|
||||||
// state[5 * i + 0] = x
|
// state[5 * i + 0] = x
|
||||||
state_parts[5 * i + 0] = x0;
|
state_parts[5 * i + 0] = x0;
|
||||||
|
|
||||||
// r = torch.sigmoid(rw @ xr)
|
// r = torch.sigmoid(rw @ xr)
|
||||||
struct ggml_tensor * r = ggml_sigmoid(
|
struct ggml_tensor * r = rwkv_sigmoid(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
|
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
|
||||||
);
|
);
|
||||||
|
@ -715,10 +756,11 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
{
|
{
|
||||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_1_O:
|
// TODO Restore
|
||||||
|
/*case GGML_TYPE_Q4_1_O:
|
||||||
{
|
{
|
||||||
cur_size = ggml_quantize_q4_1_o(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
cur_size = ggml_quantize_q4_1_o(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||||
} break;
|
} break;*/
|
||||||
default:
|
default:
|
||||||
{
|
{
|
||||||
fprintf(stderr, "unsupported quantization type %d\n", type);
|
fprintf(stderr, "unsupported quantization type %d\n", type);
|
||||||
|
|
Loading…
Reference in New Issue