Move model to separate C library file
This commit is contained in:
parent
f6d45baec0
commit
ac03019fcf
|
@ -240,6 +240,10 @@ add_library(llama
|
|||
llama.cpp
|
||||
llama.h)
|
||||
|
||||
add_library(rwkv
|
||||
rwkv.cpp
|
||||
rwkv.h)
|
||||
|
||||
target_include_directories(llama PUBLIC .)
|
||||
target_compile_features(llama PUBLIC cxx_std_11) # don't bump
|
||||
target_link_libraries(llama PRIVATE ggml ${LLAMA_EXTRA_LIBS})
|
||||
|
|
3
Makefile
3
Makefile
|
@ -228,6 +228,9 @@ ggml.o: ggml.c ggml.h
|
|||
llama.o: llama.cpp llama.h
|
||||
$(CXX) $(CXXFLAGS) -c llama.cpp -o llama.o
|
||||
|
||||
rwkv.o: rwkv.cpp rwkv.h
|
||||
$(CXX) $(CXXFLAGS) -c rwkv.cpp -o rwkv.o
|
||||
|
||||
common.o: examples/common.cpp examples/common.h
|
||||
$(CXX) $(CXXFLAGS) -c examples/common.cpp -o common.o
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
set(TARGET main_rwkv)
|
||||
add_executable(${TARGET} main_rwkv.cpp)
|
||||
target_link_libraries(${TARGET} PRIVATE common ggml ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_link_libraries(${TARGET} PRIVATE rwkv ggml ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||
|
|
|
@ -1,6 +1,9 @@
|
|||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "rwkv.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
|
@ -8,15 +11,11 @@
|
|||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <unordered_map>
|
||||
|
||||
// --- Utilities ---
|
||||
|
||||
#define F32_SIZE 4
|
||||
|
||||
// Checks that x is not false. If it is false, prints fancy message to stderr and aborts the execution.
|
||||
// Checks that x is not false. If x is false, prints fancy message to stderr and aborts the execution.
|
||||
#define RWKV_ASSERT(x, ...) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
|
@ -30,316 +29,18 @@
|
|||
// Formats and prints a message to stderr. Trailing newline is added automatically.
|
||||
#define RWKV_LOG(...) do { fprintf(stderr, __VA_ARGS__); fprintf(stderr, "\n"); } while (0)
|
||||
|
||||
// TODO Move to ggml, if correct
|
||||
float ggml_get_f32_2d(struct ggml_tensor * tensor, int i, int j) {
|
||||
RWKV_ASSERT(tensor->n_dims == 2, "Not a 2D tensor");
|
||||
RWKV_ASSERT(tensor->type == GGML_TYPE_F32, "Unsupported data type");
|
||||
return *(float *) ((char *) tensor->data + j * tensor->nb[1] + i * tensor->nb[0]);
|
||||
}
|
||||
|
||||
// TODO Move to ggml, if correct
|
||||
float ggml_get_f32_3d(struct ggml_tensor * tensor, int i, int j, int k) {
|
||||
RWKV_ASSERT(tensor->n_dims == 3, "Not a 3D tensor");
|
||||
RWKV_ASSERT(tensor->type == GGML_TYPE_F32, "Unsupported data type");
|
||||
return *(float *) ((char *) tensor->data + k * tensor->nb[2] + j * tensor->nb[1] + i * tensor->nb[0]);
|
||||
}
|
||||
|
||||
void print_tensor(struct ggml_tensor * tensor, char * name) {
|
||||
int n_dims = tensor->n_dims;
|
||||
|
||||
if (n_dims == 1) {
|
||||
int x = tensor->ne[0];
|
||||
|
||||
RWKV_ASSERT(x >= 6, "Too small tensor");
|
||||
|
||||
RWKV_LOG(
|
||||
"1D tensor %s, shape (%d), [%f %f %f ... %f %f %f]",
|
||||
name,
|
||||
x,
|
||||
ggml_get_f32_1d(tensor, 0),
|
||||
ggml_get_f32_1d(tensor, 1),
|
||||
ggml_get_f32_1d(tensor, 2),
|
||||
ggml_get_f32_1d(tensor, x - 3),
|
||||
ggml_get_f32_1d(tensor, x - 2),
|
||||
ggml_get_f32_1d(tensor, x - 1)
|
||||
);
|
||||
} else if (n_dims == 2) {
|
||||
int x = tensor->ne[0];
|
||||
int y = tensor->ne[1];
|
||||
|
||||
if (y < 6) {
|
||||
RWKV_LOG(
|
||||
"2D tensor %s, shape (%d, %d), [[%f %f %f ... %f %f %f]]",
|
||||
name,
|
||||
x,
|
||||
y,
|
||||
ggml_get_f32_2d(tensor, 0, 0),
|
||||
ggml_get_f32_2d(tensor, 1, 0),
|
||||
ggml_get_f32_2d(tensor, 2, 0),
|
||||
ggml_get_f32_2d(tensor, x - 3, y - 1),
|
||||
ggml_get_f32_2d(tensor, x - 2, y - 1),
|
||||
ggml_get_f32_2d(tensor, x - 1, y - 1)
|
||||
);
|
||||
} else {
|
||||
RWKV_LOG(
|
||||
"2D tensor %s, shape (%d, %d), [[%f %f %f ... ] ... [ ... %f %f %f]]",
|
||||
name,
|
||||
x,
|
||||
y,
|
||||
ggml_get_f32_2d(tensor, 0, 0),
|
||||
ggml_get_f32_2d(tensor, 0, 1),
|
||||
ggml_get_f32_2d(tensor, 0, 2),
|
||||
ggml_get_f32_2d(tensor, x - 1, y - 3),
|
||||
ggml_get_f32_2d(tensor, x - 1, y - 2),
|
||||
ggml_get_f32_2d(tensor, x - 1, y - 1)
|
||||
);
|
||||
}
|
||||
} else {
|
||||
RWKV_ASSERT(false, "Unsupported dimension count %d", n_dims);
|
||||
}
|
||||
}
|
||||
|
||||
// Prints tensor name, dimensionality, shape and part of its contents.
|
||||
#define PRINT_TENSOR(x) print_tensor(x, #x)
|
||||
|
||||
// Same as PRINT_TENSOR, but additionally computes tensor graph before printing the tensor.
|
||||
#define COMPUTE_AND_PRINT_TENSOR(ctx, x) do { compute_graph(ctx, x); print_tensor(x, #x); } while (0)
|
||||
|
||||
// Computes value of the tensor and all tensors it depends on.
|
||||
void compute_graph(struct ggml_context * ctx, struct ggml_tensor * tensor) {
|
||||
struct ggml_cgraph graph = ggml_build_forward(tensor);
|
||||
|
||||
graph.n_threads = 1;
|
||||
|
||||
ggml_graph_compute(ctx, &graph);
|
||||
}
|
||||
|
||||
// --- Model definition and loading code ---
|
||||
|
||||
struct rwkv_layer {
|
||||
struct ggml_tensor * ln1_weight;
|
||||
struct ggml_tensor * ln1_bias;
|
||||
|
||||
// RWKV, also called "attention" by the author.
|
||||
struct ggml_tensor * att_time_mix_k;
|
||||
struct ggml_tensor * att_time_mix_v;
|
||||
struct ggml_tensor * att_time_mix_r;
|
||||
struct ggml_tensor * att_time_first;
|
||||
struct ggml_tensor * att_time_decay;
|
||||
struct ggml_tensor * att_key;
|
||||
struct ggml_tensor * att_value;
|
||||
struct ggml_tensor * att_receptance;
|
||||
struct ggml_tensor * att_output;
|
||||
|
||||
struct ggml_tensor * ln2_weight;
|
||||
struct ggml_tensor * ln2_bias;
|
||||
|
||||
// FFN.
|
||||
struct ggml_tensor * ffn_time_mix_k;
|
||||
struct ggml_tensor * ffn_time_mix_r;
|
||||
struct ggml_tensor * ffn_key;
|
||||
struct ggml_tensor * ffn_value;
|
||||
struct ggml_tensor * ffn_receptance;
|
||||
};
|
||||
|
||||
struct rwkv_model {
|
||||
int32_t n_vocab;
|
||||
int32_t n_embed;
|
||||
int32_t n_layer;
|
||||
// 0 for float32, 1 for float16.
|
||||
int32_t data_type;
|
||||
|
||||
struct ggml_tensor * emb;
|
||||
|
||||
struct ggml_tensor * ln0_weight;
|
||||
struct ggml_tensor * ln0_bias;
|
||||
|
||||
std::vector<rwkv_layer> layers;
|
||||
|
||||
struct ggml_tensor * ln_out_weight;
|
||||
struct ggml_tensor * ln_out_bias;
|
||||
|
||||
struct ggml_tensor * head;
|
||||
};
|
||||
|
||||
// Reads single int32 value from a file.
|
||||
void read_int32(FILE * file, int32_t * dest) {
|
||||
// TODO Will not read correct values on machine with different endianness
|
||||
RWKV_ASSERT(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
|
||||
}
|
||||
|
||||
// Finds model parameter by key and sets it into dest.
|
||||
// If the parameter was not found, aborts the execution.
|
||||
void set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, char * key, struct ggml_tensor ** dest) {
|
||||
struct ggml_tensor * parameter = (*parameters)[key];
|
||||
RWKV_ASSERT(parameter != NULL, "Parameter %s not found in model file", key);
|
||||
*dest = parameter;
|
||||
}
|
||||
|
||||
// Finds block parameter by block index and key and sets it into dest.
|
||||
// If the parameter was not found, aborts the execution.
|
||||
void set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, int32_t block_index, char * key, struct ggml_tensor ** dest) {
|
||||
char full_key[128];
|
||||
sprintf(full_key, "blocks.%d.%s", block_index, key);
|
||||
set_parameter(parameters, full_key, dest);
|
||||
}
|
||||
|
||||
// Loads RWKV model metadata and parameters from a file.
|
||||
void load_rwkv_model(ggml_context * ctx, char * file_path, struct rwkv_model * model) {
|
||||
RWKV_LOG("Loading model from %s", file_path);
|
||||
FILE * file = fopen(file_path, "rb");
|
||||
RWKV_ASSERT(file != NULL, "Failed to open file %s", file_path);
|
||||
|
||||
int32_t magic;
|
||||
read_int32(file, &magic);
|
||||
RWKV_ASSERT(magic == 0x67676d66, "Unexpected magic value %d", magic);
|
||||
|
||||
int32_t version;
|
||||
read_int32(file, &version);
|
||||
RWKV_ASSERT(version == 100, "Unsupported file version %d", version);
|
||||
|
||||
read_int32(file, &(model->n_vocab));
|
||||
RWKV_ASSERT(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);
|
||||
|
||||
read_int32(file, &(model->n_embed));
|
||||
RWKV_ASSERT(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);
|
||||
|
||||
read_int32(file, &(model->n_layer));
|
||||
RWKV_ASSERT(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
||||
|
||||
read_int32(file, &(model->data_type));
|
||||
RWKV_ASSERT(model->data_type == 0 || model->data_type == 1, "Unsupported model data type %d", model->data_type);
|
||||
|
||||
RWKV_LOG("n_vocab = %d", model->n_vocab);
|
||||
RWKV_LOG("n_embed = %d", model->n_embed);
|
||||
RWKV_LOG("n_layer = %d", model->n_layer);
|
||||
|
||||
std::unordered_map<std::string, struct ggml_tensor *> parameters;
|
||||
|
||||
while (true) {
|
||||
int32_t dim_count;
|
||||
fread(&dim_count, 4, 1, file);
|
||||
|
||||
if (feof(file)) {
|
||||
break;
|
||||
}
|
||||
|
||||
RWKV_ASSERT(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
||||
|
||||
int32_t key_length;
|
||||
read_int32(file, &key_length);
|
||||
RWKV_ASSERT(key_length > 0, "Non-positive key length %d", key_length);
|
||||
|
||||
int32_t data_type;
|
||||
read_int32(file, &data_type);
|
||||
RWKV_ASSERT(data_type == 0 || data_type == 1, "Unsupported parameter data type %d", data_type);
|
||||
|
||||
ggml_type ggml_data_type = data_type == 0 ? GGML_TYPE_F32 : GGML_TYPE_F16;
|
||||
|
||||
struct ggml_tensor * tensor;
|
||||
|
||||
int32_t x = -1;
|
||||
int32_t y = -1;
|
||||
int32_t z = -1;
|
||||
int32_t element_count;
|
||||
|
||||
if (dim_count == 1) {
|
||||
read_int32(file, &x);
|
||||
element_count = x;
|
||||
tensor = ggml_new_tensor_1d(ctx, ggml_data_type, x);
|
||||
} else if (dim_count == 2) {
|
||||
read_int32(file, &x);
|
||||
read_int32(file, &y);
|
||||
element_count = x * y;
|
||||
// Dimension order is reversed here:
|
||||
// * PyTorch shape is (x rows, y columns)
|
||||
// * ggml shape is (y elements in a row, x elements in a column)
|
||||
// Both shapes represent the same tensor.
|
||||
tensor = ggml_new_tensor_2d(ctx, ggml_data_type, y, x);
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
|
||||
std::string key(key_length, 0);
|
||||
RWKV_ASSERT(fread(&key[0], 1, key_length, file) == key_length, "Failed to read parameter key");
|
||||
|
||||
size_t byte_count = element_count * ggml_type_size(ggml_data_type);
|
||||
RWKV_ASSERT(fread(tensor->data, 1, byte_count, file) == byte_count, "Failed to read parameter data");
|
||||
|
||||
parameters[key] = tensor;
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
RWKV_LOG("Initializing model parameters");
|
||||
|
||||
model->layers.resize(model->n_layer);
|
||||
|
||||
set_parameter(¶meters, "emb.weight", &(model->emb));
|
||||
|
||||
set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight));
|
||||
set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias));
|
||||
|
||||
for (int i = 0; i < model->n_layer; i++) {
|
||||
rwkv_layer layer = model->layers[i];
|
||||
|
||||
set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight));
|
||||
set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias));
|
||||
|
||||
set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k));
|
||||
set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v));
|
||||
set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r));
|
||||
set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first));
|
||||
set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay));
|
||||
set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key));
|
||||
set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value));
|
||||
set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance));
|
||||
set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output));
|
||||
|
||||
set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight));
|
||||
set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias));
|
||||
|
||||
set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
|
||||
set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
|
||||
set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key));
|
||||
set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value));
|
||||
set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance));
|
||||
|
||||
model->layers[i] = layer;
|
||||
}
|
||||
|
||||
set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight));
|
||||
set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias));
|
||||
|
||||
set_parameter(¶meters, "head.weight", &(model->head));
|
||||
|
||||
// Verify order of dimensions
|
||||
struct ggml_tensor * emb = model->emb;
|
||||
RWKV_ASSERT(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
||||
RWKV_ASSERT(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %d", emb->ne[0]);
|
||||
RWKV_ASSERT(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %d", emb->ne[1]);
|
||||
}
|
||||
|
||||
// --- Operators ---
|
||||
|
||||
struct ggml_tensor * ggml_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
||||
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
||||
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
||||
x = ggml_norm(ctx, x);
|
||||
x = ggml_mul(ctx, x, weight);
|
||||
x = ggml_add(ctx, x, bias);
|
||||
return x;
|
||||
}
|
||||
|
||||
// --- Script ---
|
||||
|
||||
// Usage: main_rwkv.exe "C:\model.bin" <token index> "C:\state_in.bin" "C:\state_out.bin" "C:\logits_out.bin"
|
||||
// Usage: main_rwkv.exe "C:\model.bin" <token index> "C:\state_in.bin" "C:\state_out.bin" "C:\logits_out.bin" [thread count]
|
||||
// Token index is 0-based.
|
||||
// Thread count is optional and defaults to std::thread::hardware_concurrency() / 2.
|
||||
// To start from new state, pass empty string instead of input state file path.
|
||||
int main(int argc, char ** argv) {
|
||||
ggml_run_test_suite();
|
||||
|
||||
RWKV_ASSERT(argc - 1 == 5, "Expected 5 arguments, got %d", argc - 1);
|
||||
fprintf(stderr, "%s\n", rwkv_get_system_info_string());
|
||||
|
||||
RWKV_ASSERT(argc - 1 == 5 || argc - 1 == 6, "Expected 5 or 6 arguments, got %d", argc - 1);
|
||||
char * model_path = argv[1];
|
||||
char * token_s = argv[2];
|
||||
char * state_in_path = argv[3];
|
||||
|
@ -351,261 +52,80 @@ int main(int argc, char ** argv) {
|
|||
|
||||
bool create_new_state = strcmp(state_in_path, "") == 0;
|
||||
|
||||
// Initialize ggml
|
||||
struct ggml_init_params params;
|
||||
// TODO Calculate required memory (automatically or manually)
|
||||
params.mem_size = 1024 * 1024 * 1024;
|
||||
params.mem_buffer = NULL;
|
||||
int n_threads;
|
||||
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
// Load model
|
||||
struct rwkv_model model;
|
||||
load_rwkv_model(ctx, model_path, &model);
|
||||
|
||||
int32_t n_vocab = model.n_vocab;
|
||||
int32_t n_embed = model.n_embed;
|
||||
int32_t n_layer = model.n_layer;
|
||||
|
||||
// Load input state
|
||||
int32_t state_element_count = n_layer * 5 * n_embed;
|
||||
struct ggml_tensor * state = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, state_element_count);
|
||||
|
||||
if (create_new_state) {
|
||||
RWKV_LOG("Creating new state");
|
||||
ggml_set_f32(state, 0.0F);
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
// state[5 * i + 4] = -1e30
|
||||
int32_t offset_in_bytes = (5 * i + 4) * n_embed * F32_SIZE;
|
||||
struct ggml_tensor * state_part = ggml_view_1d(ctx, state, n_embed, offset_in_bytes);
|
||||
ggml_set_f32(state_part, -1e30F);
|
||||
}
|
||||
if (argc - 1 == 6) {
|
||||
n_threads = strtol(argv[6], (char **) NULL, 10);
|
||||
} else {
|
||||
n_threads = 0;
|
||||
}
|
||||
|
||||
if (n_threads == 0) {
|
||||
n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency() / 2);
|
||||
} else {
|
||||
RWKV_ASSERT(n_threads > 0, "Thread couns %d is not positive", n_threads);
|
||||
}
|
||||
|
||||
RWKV_LOG("Using %d threads", n_threads);
|
||||
|
||||
struct rwkv_context * ctx = rwkv_init_from_file(model_path, n_threads);
|
||||
|
||||
RWKV_ASSERT(ctx != NULL, "Failed to load the model");
|
||||
|
||||
size_t state_buffer_size = rwkv_get_state_buffer_element_count(ctx) * sizeof(float);
|
||||
size_t logits_buffer_size = rwkv_get_logits_buffer_element_count(ctx) * sizeof(float);
|
||||
|
||||
float * state_buffer = (float *) calloc(1, state_buffer_size);
|
||||
float * logits_buffer = (float *) calloc(1, logits_buffer_size);
|
||||
|
||||
if (!create_new_state) {
|
||||
RWKV_LOG("Loading state from %s", state_in_path);
|
||||
int32_t state_file_size = state_element_count * F32_SIZE;
|
||||
|
||||
FILE * state_in_file = fopen(state_in_path, "rb");
|
||||
RWKV_ASSERT(state_in_file != NULL, "Failed to open file %s", state_in_path);
|
||||
|
||||
// TODO Saving/loading raw data makes state cache machine-dependent
|
||||
RWKV_ASSERT(fread(state->data, 1, state_file_size, state_in_file) == state_file_size, "Failed to read state from a file");
|
||||
RWKV_ASSERT(fread(state_buffer, 1, state_buffer_size, state_in_file) == state_buffer_size, "Failed to read state from a file");
|
||||
|
||||
fclose(state_in_file);
|
||||
}
|
||||
|
||||
// --- Evaluate model ---
|
||||
|
||||
// x = self.w.emb.weight[token]
|
||||
struct ggml_tensor * token_index = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||||
ggml_set_i32_1d(token_index, 0, token);
|
||||
struct ggml_tensor * x = ggml_get_rows(ctx, model.emb, token_index);
|
||||
|
||||
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||
x = ggml_layer_norm(ctx, x, model.ln0_weight, model.ln0_bias);
|
||||
|
||||
// We collect parts of new state here. Each part is (n_embed) vector.
|
||||
struct ggml_tensor ** state_parts = new ggml_tensor * [5 * n_layer];
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
auto layer = model.layers[i];
|
||||
|
||||
// RWKV/time mixing
|
||||
{
|
||||
// self.layer_norm(x, self.w.blocks[i].ln1)
|
||||
struct ggml_tensor * x0 = ggml_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
||||
// state[5 * i + 1]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * F32_SIZE);
|
||||
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
||||
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
||||
struct ggml_tensor * xk = ggml_add(
|
||||
bool result = rwkv_eval(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_k))
|
||||
token,
|
||||
create_new_state ? NULL : state_buffer,
|
||||
state_buffer,
|
||||
logits_buffer
|
||||
);
|
||||
struct ggml_tensor * xv = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_v))
|
||||
);
|
||||
struct ggml_tensor * xr = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_r))
|
||||
);
|
||||
// state[5 * i + 1] = x
|
||||
state_parts[5 * i + 1] = x0;
|
||||
|
||||
// r = torch.sigmoid(rw @ xr)
|
||||
struct ggml_tensor * r = ggml_sigmoid(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.att_receptance, xr)
|
||||
);
|
||||
// k = kw @ xk
|
||||
struct ggml_tensor * k = ggml_mul_mat(ctx, layer.att_key, xk);
|
||||
// v = vw @ xv
|
||||
struct ggml_tensor * v = ggml_mul_mat(ctx, layer.att_value, xv);
|
||||
|
||||
// aa = state[5 * i + 2]
|
||||
// bb = state[5 * i + 3]
|
||||
// pp = state[5 * i + 4]
|
||||
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * F32_SIZE);
|
||||
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * F32_SIZE);
|
||||
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * F32_SIZE);
|
||||
|
||||
// ww = time_first + k
|
||||
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
||||
// qq = torch.maximum(pp, ww)
|
||||
struct ggml_tensor * qq = ggml_max(ctx, pp, ww);
|
||||
// e1 = torch.exp(pp - qq)
|
||||
struct ggml_tensor * e1 = ggml_exp(ctx, ggml_sub(ctx, pp, qq));
|
||||
// e2 = torch.exp(ww - qq)
|
||||
struct ggml_tensor * e2 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||
// a = e1 * aa + e2 * v
|
||||
struct ggml_tensor * a = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, aa),
|
||||
ggml_mul(ctx, e2, v)
|
||||
);
|
||||
// b = e1 * bb + e2
|
||||
struct ggml_tensor * b = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, bb),
|
||||
e2
|
||||
);
|
||||
// wkv = a / b
|
||||
struct ggml_tensor * wkv = ggml_div(ctx, a, b);
|
||||
// ww = pp + time_decay
|
||||
ww = ggml_add(ctx, pp, layer.att_time_decay);
|
||||
// qq = torch.maximum(ww, k)
|
||||
qq = ggml_max(ctx, ww, k);
|
||||
// e1 = torch.exp(ww - qq)
|
||||
e1 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||
// e2 = torch.exp(k - qq)
|
||||
e2 = ggml_exp(ctx, ggml_sub(ctx, k, qq));
|
||||
// state[5 * i + 2] = e1 * aa + e2 * v
|
||||
state_parts[5 * i + 2] = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, aa),
|
||||
ggml_mul(ctx, e2, v)
|
||||
);
|
||||
// state[5 * i + 3] = e1 * bb + e2
|
||||
state_parts[5 * i + 3] = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, bb),
|
||||
e2
|
||||
);
|
||||
// state[5 * i + 4] = qq
|
||||
state_parts[5 * i + 4] = qq;
|
||||
// ow @ (r * wkv)
|
||||
x = ggml_add(
|
||||
ctx,
|
||||
x,
|
||||
ggml_mul_mat(
|
||||
ctx,
|
||||
layer.att_output,
|
||||
ggml_mul(ctx, r, wkv)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// FFN/channel mixing
|
||||
{
|
||||
// self.layer_norm(x, self.w.blocks[i].ln2)
|
||||
struct ggml_tensor * x0 = ggml_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
||||
// state[5 * i + 0]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * F32_SIZE);
|
||||
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
||||
struct ggml_tensor * xk = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_k))
|
||||
);
|
||||
struct ggml_tensor * xr = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_r))
|
||||
);
|
||||
// state[5 * i + 0] = x
|
||||
state_parts[5 * i + 0] = x0;
|
||||
|
||||
// r = torch.sigmoid(rw @ xr)
|
||||
struct ggml_tensor * r = ggml_sigmoid(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
|
||||
);
|
||||
// k = torch.square(torch.relu(kw @ xk))
|
||||
struct ggml_tensor * k = ggml_sqr(ctx, ggml_relu(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.ffn_key, xk)
|
||||
));
|
||||
// r * (vw @ k)
|
||||
x = ggml_add(
|
||||
ctx,
|
||||
x,
|
||||
ggml_mul(
|
||||
ctx,
|
||||
r,
|
||||
ggml_mul_mat(ctx, layer.ffn_value, k)
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// x = self.layer_norm(x, self.w.ln_out)
|
||||
x = ggml_layer_norm(ctx, x, model.ln_out_weight, model.ln_out_bias);
|
||||
|
||||
// x = (self.w.head.weight @ x).float()
|
||||
struct ggml_tensor * logits = ggml_mul_mat(ctx, model.head, x);
|
||||
|
||||
struct ggml_cgraph graph = ggml_build_forward(logits);
|
||||
|
||||
for (int i = 0; i < n_layer * 5; i++) {
|
||||
ggml_build_forward_expand(&graph, state_parts[i]);
|
||||
}
|
||||
|
||||
// TODO Move to script arguments
|
||||
graph.n_threads = std::max(1, (int32_t) std::thread::hardware_concurrency() / 2);
|
||||
|
||||
ggml_graph_compute(ctx, &graph);
|
||||
|
||||
// Update state
|
||||
for (int i = 0; i < n_layer * 5; i++) {
|
||||
struct ggml_tensor * src = state_parts[i];
|
||||
struct ggml_tensor * dest = ggml_view_1d(ctx, state, n_embed, i * n_embed * F32_SIZE);
|
||||
|
||||
for (int j = 0; j < n_embed; j++) {
|
||||
ggml_set_f32_1d(dest, j, ggml_get_f32_1d(src, j));
|
||||
}
|
||||
}
|
||||
RWKV_ASSERT(result, "Failed to evaluate the model");
|
||||
|
||||
{
|
||||
RWKV_LOG("Saving state to %s", state_out_path);
|
||||
int32_t state_file_size = state_element_count * F32_SIZE;
|
||||
|
||||
FILE * state_out_file = fopen(state_out_path, "wb");
|
||||
RWKV_ASSERT(state_out_file != NULL, "Failed to open file %s", state_out_path);
|
||||
|
||||
RWKV_ASSERT(fwrite(state->data, 1, state_file_size, state_out_file) == state_file_size, "Failed to write state to a file");
|
||||
RWKV_ASSERT(fwrite(state_buffer, 1, state_buffer_size, state_out_file) == state_buffer_size, "Failed to write state to a file");
|
||||
|
||||
fclose(state_out_file);
|
||||
}
|
||||
|
||||
{
|
||||
RWKV_LOG("Saving logits to %s", logits_out_path);
|
||||
int32_t logits_file_size = n_vocab * F32_SIZE;
|
||||
|
||||
FILE * logits_out_file = fopen(logits_out_path, "wb");
|
||||
RWKV_ASSERT(logits_out_file != NULL, "Failed to open file %s", logits_out_path);
|
||||
|
||||
RWKV_ASSERT(fwrite(logits->data, 1, logits_file_size, logits_out_file) == logits_file_size, "Failed to write logits to a file");
|
||||
RWKV_ASSERT(fwrite(logits_buffer, 1, logits_buffer_size, logits_out_file) == logits_buffer_size, "Failed to write logits to a file");
|
||||
|
||||
fclose(logits_out_file);
|
||||
}
|
||||
|
||||
ggml_free(ctx);
|
||||
rwkv_free(ctx);
|
||||
|
||||
delete state_buffer;
|
||||
delete logits_buffer;
|
||||
|
||||
RWKV_LOG("OK");
|
||||
|
||||
|
|
|
@ -0,0 +1,537 @@
|
|||
#include "rwkv.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <thread>
|
||||
#include <cassert>
|
||||
#include <cinttypes>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <unordered_map>
|
||||
|
||||
// --- Utilities ---
|
||||
|
||||
#define FP32_SIZE 4
|
||||
|
||||
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
|
||||
#define RWKV_ASSERT_FALSE(x, ...) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
return false; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL.
|
||||
#define RWKV_ASSERT_NULL(x, ...) \
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, __VA_ARGS__); \
|
||||
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
return NULL; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
// Reads single int32 value from a file.
|
||||
bool read_int32(FILE * file, int32_t * dest) {
|
||||
// TODO Will not read correct values on machine with different endianness
|
||||
RWKV_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
|
||||
return true;
|
||||
}
|
||||
|
||||
// --- Model definition and loading utilities ---
|
||||
|
||||
struct rwkv_layer {
|
||||
struct ggml_tensor * ln1_weight;
|
||||
struct ggml_tensor * ln1_bias;
|
||||
|
||||
// RWKV, also called "attention" by the author.
|
||||
struct ggml_tensor * att_time_mix_k;
|
||||
struct ggml_tensor * att_time_mix_v;
|
||||
struct ggml_tensor * att_time_mix_r;
|
||||
struct ggml_tensor * att_time_first;
|
||||
struct ggml_tensor * att_time_decay;
|
||||
struct ggml_tensor * att_key;
|
||||
struct ggml_tensor * att_value;
|
||||
struct ggml_tensor * att_receptance;
|
||||
struct ggml_tensor * att_output;
|
||||
|
||||
struct ggml_tensor * ln2_weight;
|
||||
struct ggml_tensor * ln2_bias;
|
||||
|
||||
// FFN.
|
||||
struct ggml_tensor * ffn_time_mix_k;
|
||||
struct ggml_tensor * ffn_time_mix_r;
|
||||
struct ggml_tensor * ffn_key;
|
||||
struct ggml_tensor * ffn_value;
|
||||
struct ggml_tensor * ffn_receptance;
|
||||
};
|
||||
|
||||
struct rwkv_model {
|
||||
int32_t n_vocab;
|
||||
int32_t n_embed;
|
||||
int32_t n_layer;
|
||||
// 0 for float32, 1 for float16.
|
||||
int32_t data_type;
|
||||
|
||||
struct ggml_tensor * emb;
|
||||
|
||||
struct ggml_tensor * ln0_weight;
|
||||
struct ggml_tensor * ln0_bias;
|
||||
|
||||
std::vector<rwkv_layer> layers;
|
||||
|
||||
struct ggml_tensor * ln_out_weight;
|
||||
struct ggml_tensor * ln_out_bias;
|
||||
|
||||
struct ggml_tensor * head;
|
||||
};
|
||||
|
||||
// Finds model parameter by key and sets it into dest.
|
||||
// If the parameter was not found, returns false.
|
||||
bool set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, char * key, struct ggml_tensor ** dest) {
|
||||
struct ggml_tensor * parameter = (*parameters)[key];
|
||||
RWKV_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
|
||||
*dest = parameter;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Finds block parameter by block index and key and sets it into dest.
|
||||
// If the parameter was not found, returns false.
|
||||
bool set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, int32_t block_index, char * key, struct ggml_tensor ** dest) {
|
||||
char full_key[128];
|
||||
sprintf(full_key, "blocks.%d.%s", block_index, key);
|
||||
return set_parameter(parameters, full_key, dest);
|
||||
}
|
||||
|
||||
// --- Operators ---
|
||||
|
||||
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
||||
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
||||
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
||||
x = ggml_norm(ctx, x);
|
||||
x = ggml_mul(ctx, x, weight);
|
||||
x = ggml_add(ctx, x, bias);
|
||||
return x;
|
||||
}
|
||||
|
||||
// --- Implementation ---
|
||||
|
||||
struct rwkv_context {
|
||||
struct rwkv_model * model;
|
||||
struct ggml_tensor * token_index;
|
||||
struct ggml_tensor * state;
|
||||
struct ggml_tensor ** state_parts;
|
||||
struct ggml_tensor * logits;
|
||||
struct ggml_context * ctx;
|
||||
struct ggml_cgraph * graph;
|
||||
bool freed;
|
||||
};
|
||||
|
||||
struct rwkv_context * rwkv_init_from_file(const char * file_path, int n_threads) {
|
||||
FILE * file = fopen(file_path, "rb");
|
||||
RWKV_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path);
|
||||
|
||||
int32_t magic;
|
||||
read_int32(file, &magic);
|
||||
RWKV_ASSERT_NULL(magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
||||
|
||||
int32_t version;
|
||||
read_int32(file, &version);
|
||||
RWKV_ASSERT_NULL(version == RWKV_FILE_VERSION, "Unsupported file version %d", version);
|
||||
|
||||
struct rwkv_model * model = (struct rwkv_model *) calloc(1, sizeof(struct rwkv_model));
|
||||
|
||||
read_int32(file, &(model->n_vocab));
|
||||
RWKV_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);
|
||||
|
||||
read_int32(file, &(model->n_embed));
|
||||
RWKV_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);
|
||||
|
||||
read_int32(file, &(model->n_layer));
|
||||
RWKV_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
||||
|
||||
read_int32(file, &(model->data_type));
|
||||
RWKV_ASSERT_NULL(model->data_type == 0 || model->data_type == 1, "Unsupported model data type %d", model->data_type);
|
||||
|
||||
// Initialize ggml
|
||||
struct ggml_init_params params;
|
||||
// TODO Calculate required memory (automatically or manually)
|
||||
params.mem_size = 1024 * 1024 * 1024;
|
||||
params.mem_buffer = NULL;
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
std::unordered_map<std::string, struct ggml_tensor *> parameters;
|
||||
|
||||
while (true) {
|
||||
int32_t dim_count;
|
||||
fread(&dim_count, 4, 1, file);
|
||||
|
||||
if (feof(file)) {
|
||||
break;
|
||||
}
|
||||
|
||||
RWKV_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
||||
|
||||
int32_t key_length;
|
||||
read_int32(file, &key_length);
|
||||
RWKV_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length);
|
||||
|
||||
int32_t data_type;
|
||||
read_int32(file, &data_type);
|
||||
RWKV_ASSERT_NULL(data_type == 0 || data_type == 1, "Unsupported parameter data type %d", data_type);
|
||||
|
||||
ggml_type ggml_data_type = data_type == 0 ? GGML_TYPE_F32 : GGML_TYPE_F16;
|
||||
|
||||
struct ggml_tensor * tensor;
|
||||
|
||||
int32_t x = -1;
|
||||
int32_t y = -1;
|
||||
int32_t z = -1;
|
||||
int32_t element_count;
|
||||
|
||||
if (dim_count == 1) {
|
||||
read_int32(file, &x);
|
||||
element_count = x;
|
||||
tensor = ggml_new_tensor_1d(ctx, ggml_data_type, x);
|
||||
} else if (dim_count == 2) {
|
||||
read_int32(file, &x);
|
||||
read_int32(file, &y);
|
||||
element_count = x * y;
|
||||
// Dimension order is reversed here:
|
||||
// * PyTorch shape is (x rows, y columns)
|
||||
// * ggml shape is (y elements in a row, x elements in a column)
|
||||
// Both shapes represent the same tensor.
|
||||
tensor = ggml_new_tensor_2d(ctx, ggml_data_type, y, x);
|
||||
} else {
|
||||
abort();
|
||||
}
|
||||
|
||||
std::string key(key_length, 0);
|
||||
RWKV_ASSERT_NULL(fread(&key[0], 1, key_length, file) == key_length, "Failed to read parameter key");
|
||||
|
||||
size_t byte_count = element_count * ggml_type_size(ggml_data_type);
|
||||
RWKV_ASSERT_NULL(fread(tensor->data, 1, byte_count, file) == byte_count, "Failed to read parameter data");
|
||||
|
||||
parameters[key] = tensor;
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
|
||||
model->layers.resize(model->n_layer);
|
||||
|
||||
set_parameter(¶meters, "emb.weight", &(model->emb));
|
||||
|
||||
set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight));
|
||||
set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias));
|
||||
|
||||
for (int i = 0; i < model->n_layer; i++) {
|
||||
rwkv_layer layer = model->layers[i];
|
||||
|
||||
set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight));
|
||||
set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias));
|
||||
|
||||
set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k));
|
||||
set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v));
|
||||
set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r));
|
||||
set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first));
|
||||
set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay));
|
||||
set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key));
|
||||
set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value));
|
||||
set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance));
|
||||
set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output));
|
||||
|
||||
set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight));
|
||||
set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias));
|
||||
|
||||
set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
|
||||
set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
|
||||
set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key));
|
||||
set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value));
|
||||
set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance));
|
||||
|
||||
model->layers[i] = layer;
|
||||
}
|
||||
|
||||
set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight));
|
||||
set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias));
|
||||
|
||||
set_parameter(¶meters, "head.weight", &(model->head));
|
||||
|
||||
// Verify order of dimensions
|
||||
struct ggml_tensor * emb = model->emb;
|
||||
RWKV_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
||||
RWKV_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %d", emb->ne[0]);
|
||||
RWKV_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %d", emb->ne[1]);
|
||||
|
||||
int32_t n_vocab = model->n_vocab;
|
||||
int32_t n_embed = model->n_embed;
|
||||
int32_t n_layer = model->n_layer;
|
||||
|
||||
// Build graph
|
||||
struct ggml_tensor * state = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_layer * 5 * n_embed);
|
||||
|
||||
// x = self.w.emb.weight[token]
|
||||
struct ggml_tensor * token_index = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||||
struct ggml_tensor * x = ggml_get_rows(ctx, model->emb, token_index);
|
||||
|
||||
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||
x = rwkv_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
|
||||
|
||||
// We collect parts of new state here. Each part is (n_embed) vector.
|
||||
struct ggml_tensor ** state_parts = new ggml_tensor * [n_layer * 5];
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
auto layer = model->layers[i];
|
||||
|
||||
// RWKV/time mixing
|
||||
{
|
||||
// self.layer_norm(x, self.w.blocks[i].ln1)
|
||||
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
||||
// state[5 * i + 1]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * FP32_SIZE);
|
||||
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
||||
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
||||
struct ggml_tensor * xk = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_k))
|
||||
);
|
||||
struct ggml_tensor * xv = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_v))
|
||||
);
|
||||
struct ggml_tensor * xr = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.att_time_mix_r))
|
||||
);
|
||||
// state[5 * i + 1] = x
|
||||
state_parts[5 * i + 1] = x0;
|
||||
|
||||
// r = torch.sigmoid(rw @ xr)
|
||||
struct ggml_tensor * r = ggml_sigmoid(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.att_receptance, xr)
|
||||
);
|
||||
// k = kw @ xk
|
||||
struct ggml_tensor * k = ggml_mul_mat(ctx, layer.att_key, xk);
|
||||
// v = vw @ xv
|
||||
struct ggml_tensor * v = ggml_mul_mat(ctx, layer.att_value, xv);
|
||||
|
||||
// aa = state[5 * i + 2]
|
||||
// bb = state[5 * i + 3]
|
||||
// pp = state[5 * i + 4]
|
||||
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE);
|
||||
|
||||
// ww = time_first + k
|
||||
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
||||
// qq = torch.maximum(pp, ww)
|
||||
struct ggml_tensor * qq = ggml_max(ctx, pp, ww);
|
||||
// e1 = torch.exp(pp - qq)
|
||||
struct ggml_tensor * e1 = ggml_exp(ctx, ggml_sub(ctx, pp, qq));
|
||||
// e2 = torch.exp(ww - qq)
|
||||
struct ggml_tensor * e2 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||
// a = e1 * aa + e2 * v
|
||||
struct ggml_tensor * a = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, aa),
|
||||
ggml_mul(ctx, e2, v)
|
||||
);
|
||||
// b = e1 * bb + e2
|
||||
struct ggml_tensor * b = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, bb),
|
||||
e2
|
||||
);
|
||||
// wkv = a / b
|
||||
struct ggml_tensor * wkv = ggml_div(ctx, a, b);
|
||||
// ww = pp + time_decay
|
||||
ww = ggml_add(ctx, pp, layer.att_time_decay);
|
||||
// qq = torch.maximum(ww, k)
|
||||
qq = ggml_max(ctx, ww, k);
|
||||
// e1 = torch.exp(ww - qq)
|
||||
e1 = ggml_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||
// e2 = torch.exp(k - qq)
|
||||
e2 = ggml_exp(ctx, ggml_sub(ctx, k, qq));
|
||||
// state[5 * i + 2] = e1 * aa + e2 * v
|
||||
state_parts[5 * i + 2] = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, aa),
|
||||
ggml_mul(ctx, e2, v)
|
||||
);
|
||||
// state[5 * i + 3] = e1 * bb + e2
|
||||
state_parts[5 * i + 3] = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, e1, bb),
|
||||
e2
|
||||
);
|
||||
// state[5 * i + 4] = qq
|
||||
state_parts[5 * i + 4] = qq;
|
||||
// ow @ (r * wkv)
|
||||
x = ggml_add(
|
||||
ctx,
|
||||
x,
|
||||
ggml_mul_mat(
|
||||
ctx,
|
||||
layer.att_output,
|
||||
ggml_mul(ctx, r, wkv)
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
// FFN/channel mixing
|
||||
{
|
||||
// self.layer_norm(x, self.w.blocks[i].ln2)
|
||||
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
||||
// state[5 * i + 0]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * FP32_SIZE);
|
||||
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
||||
struct ggml_tensor * xk = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_k))
|
||||
);
|
||||
struct ggml_tensor * xr = ggml_add(
|
||||
ctx,
|
||||
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
||||
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_r))
|
||||
);
|
||||
// state[5 * i + 0] = x
|
||||
state_parts[5 * i + 0] = x0;
|
||||
|
||||
// r = torch.sigmoid(rw @ xr)
|
||||
struct ggml_tensor * r = ggml_sigmoid(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.ffn_receptance, xr)
|
||||
);
|
||||
// k = torch.square(torch.relu(kw @ xk))
|
||||
struct ggml_tensor * k = ggml_sqr(ctx, ggml_relu(
|
||||
ctx,
|
||||
ggml_mul_mat(ctx, layer.ffn_key, xk)
|
||||
));
|
||||
// r * (vw @ k)
|
||||
x = ggml_add(
|
||||
ctx,
|
||||
x,
|
||||
ggml_mul(
|
||||
ctx,
|
||||
r,
|
||||
ggml_mul_mat(ctx, layer.ffn_value, k)
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// x = self.layer_norm(x, self.w.ln_out)
|
||||
x = rwkv_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
|
||||
|
||||
// x = (self.w.head.weight @ x).float()
|
||||
struct ggml_tensor * logits = ggml_mul_mat(ctx, model->head, x);
|
||||
|
||||
struct ggml_cgraph * graph = (struct ggml_cgraph *) calloc(1, sizeof(struct ggml_cgraph));
|
||||
|
||||
*graph = ggml_build_forward(logits);
|
||||
|
||||
for (int i = 0; i < n_layer * 5; i++) {
|
||||
ggml_build_forward_expand(graph, state_parts[i]);
|
||||
}
|
||||
|
||||
graph->n_threads = n_threads;
|
||||
|
||||
struct rwkv_context * rwkv_ctx = (struct rwkv_context *) calloc(1, sizeof(struct rwkv_context));
|
||||
rwkv_ctx->model = model;
|
||||
rwkv_ctx->token_index = token_index;
|
||||
rwkv_ctx->state = state;
|
||||
rwkv_ctx->state_parts = state_parts;
|
||||
rwkv_ctx->logits = logits;
|
||||
rwkv_ctx->ctx = ctx;
|
||||
rwkv_ctx->graph = graph;
|
||||
return rwkv_ctx;
|
||||
}
|
||||
|
||||
size_t rwkv_get_state_buffer_element_count(struct rwkv_context * ctx) {
|
||||
return ctx->model->n_layer * 5 * ctx->model->n_embed;
|
||||
}
|
||||
|
||||
size_t rwkv_get_logits_buffer_element_count(struct rwkv_context * ctx) {
|
||||
return ctx->model->n_vocab;
|
||||
}
|
||||
|
||||
bool rwkv_eval(struct rwkv_context * ctx, long int token, float * state_in, float * state_out, float * logits_out) {
|
||||
RWKV_ASSERT_FALSE(state_out != NULL, "state_out is NULL");
|
||||
RWKV_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL");
|
||||
|
||||
int32_t n_layer = ctx->model->n_layer;
|
||||
int32_t n_embed = ctx->model->n_embed;
|
||||
int32_t n_vocab = ctx->model->n_vocab;
|
||||
|
||||
RWKV_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);
|
||||
|
||||
ggml_set_i32(ctx->token_index, 0);
|
||||
ggml_set_i32_1d(ctx->token_index, 0, token);
|
||||
|
||||
if (state_in == NULL) {
|
||||
ggml_set_f32(ctx->state, 0.0F);
|
||||
|
||||
for (int i = 0; i < n_layer; i++) {
|
||||
// state[5 * i + 4] = -1e30
|
||||
ggml_set_f32(
|
||||
ggml_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE),
|
||||
-1e30F
|
||||
);
|
||||
}
|
||||
} else {
|
||||
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * FP32_SIZE);
|
||||
}
|
||||
|
||||
ggml_graph_compute(ctx->ctx, ctx->graph);
|
||||
|
||||
for (size_t i = 0; i < n_layer * 5; i++) {
|
||||
struct ggml_tensor * part = ctx->state_parts[i];
|
||||
|
||||
memcpy(state_out + i * n_embed, part->data, part->ne[0] * FP32_SIZE);
|
||||
}
|
||||
|
||||
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * FP32_SIZE);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void rwkv_free(struct rwkv_context * ctx) {
|
||||
ggml_free(ctx->ctx);
|
||||
|
||||
delete ctx->model;
|
||||
delete ctx->state_parts;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
const char * rwkv_get_system_info_string(void) {
|
||||
static std::string s;
|
||||
|
||||
s = "";
|
||||
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
||||
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
||||
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
||||
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
||||
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
||||
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||||
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||||
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||||
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||||
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
||||
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||
|
||||
return s.c_str();
|
||||
}
|
|
@ -0,0 +1,60 @@
|
|||
#ifndef RWKV_H
|
||||
#define RWKV_H
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#ifdef LLAMA_SHARED
|
||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||
# ifdef LLAMA_BUILD
|
||||
# define RWKV_API __declspec(dllexport)
|
||||
# else
|
||||
# define RWKV_API __declspec(dllimport)
|
||||
# endif
|
||||
# else
|
||||
# define RWKV_API __attribute__ ((visibility ("default")))
|
||||
# endif
|
||||
#else
|
||||
# define RWKV_API
|
||||
#endif
|
||||
|
||||
// 'ggmf' in hex.
|
||||
#define RWKV_FILE_MAGIC 0x67676d66
|
||||
#define RWKV_FILE_VERSION 100
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct rwkv_context;
|
||||
|
||||
// Loads the model from a file and prepares it for inference by allocating memory and building computation graph.
|
||||
// Returns NULL on any error. Error messages would be printed to stderr.
|
||||
RWKV_API struct rwkv_context * rwkv_init_from_file(const char * model_file_path, int n_threads);
|
||||
|
||||
// Evaluates the model for a single pass.
|
||||
// Returns false on any error. Error messages would be printed to stderr.
|
||||
// - token: next token index, in range 0..n_vocab - 1.
|
||||
// - state_in: FP32 buffer of size rwkv_get_state_buffer_element_count; or NULL, if this is a first pass.
|
||||
// - state_out: FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
|
||||
// - logits_out: FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
||||
RWKV_API bool rwkv_eval(struct rwkv_context * ctx, long int token, float * state_in, float * state_out, float * logits_out);
|
||||
|
||||
// Returns count of FP32 elements in state buffer.
|
||||
RWKV_API size_t rwkv_get_state_buffer_element_count(struct rwkv_context * ctx);
|
||||
|
||||
// Returns count of FP32 elements in logits buffer.
|
||||
RWKV_API size_t rwkv_get_logits_buffer_element_count(struct rwkv_context * ctx);
|
||||
|
||||
// Frees all allocated memory and the context.
|
||||
RWKV_API void rwkv_free(struct rwkv_context * ctx);
|
||||
|
||||
// Returns system information string.
|
||||
RWKV_API const char * rwkv_get_system_info_string(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue