Add comparison against reference implementation script, implement state & logits saving

This commit is contained in:
saharNooby 2023-03-31 20:23:42 +04:00
parent d00f28581a
commit 61c6b1a4e0
3 changed files with 94 additions and 26 deletions

View File

@ -4,12 +4,12 @@ This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [gger
**WORK IN PROGRESS: NOTHING WORKS YET!** If you know C/C++/ggml, please help!
Inference code runs and outputs some correctly-looking numbers in logits. Values are checked to be correct at least up to `ln0`, they match with reference implementation.
**Status**: The model outputs correct logits for the first token (logits match reference implementation). But state saving is broken, so for every subsequent token logits are invalid.
## Plan
1. Make FP32 inference work
1. Compare vectors step-by-step with reference implementation
1. Fix state saving
2. Validate states and logits against [reference implementation](https://github.com/BlinkDL/ChatRWKV/blob/main/RWKV_in_150_lines.py) by creating a testing script
3. Heavily refactor code; optimize where possible
4. Make FP16 inference work
@ -23,7 +23,7 @@ Inference code runs and outputs some correctly-looking numbers in logits. Values
This repo is based on the [llama.cpp repo](https://github.com/ggerganov/llama.cpp). RWKV-related code is in these directories:
- `./rwkv`: directory containing Python scripts
- `./rwkv`: directory containing Python scripts for conversion and validation
- `./examples/main_rwkw`: directory containing script that loads and infers RWKV model
Please do not change files in other directories — this will make pulling recent changes easier.

View File

@ -364,8 +364,6 @@ int main(int argc, char ** argv) {
struct rwkv_model model;
load_rwkv_model(ctx, model_path, &model);
PRINT_TENSOR(model.emb);
int32_t n_vocab = model.n_vocab;
int32_t n_embed = model.n_embed;
int32_t n_layer = model.n_layer;
@ -393,7 +391,7 @@ int main(int argc, char ** argv) {
RWKV_ASSERT(state_in_file != NULL, "Failed to open file %s", state_in_path);
// TODO Saving/loading raw data makes state cache machine-dependent
RWKV_ASSERT(fread(state->data, 1, state_file_size, state_in_file) == state_file_size, "Failed to read tensor data from a file");
RWKV_ASSERT(fread(state->data, 1, state_file_size, state_in_file) == state_file_size, "Failed to read state from a file");
fclose(state_in_file);
}
@ -409,10 +407,6 @@ int main(int argc, char ** argv) {
// x = self.layer_norm(x, self.w.blocks[0].ln0)
x = ggml_layer_norm(ctx, x, model.ln0_weight, model.ln0_bias);
// For token 123 after ln0, should be [-0.4194, 1.1698, 0.7798 ... -1.1838, -0.8716, -0.2765]
// Prints (768, 1), [[-0.419416 1.169782 0.779827 ... -1.183806 -0.871573 -0.276483]]
COMPUTE_AND_PRINT_TENSOR(ctx, x);
for (int i = 0; i < n_layer; i++) {
auto layer = model.layers[i];
@ -422,7 +416,6 @@ int main(int argc, char ** argv) {
struct ggml_tensor * x0 = ggml_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
// state[5 * i + 1]
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * 4);
COMPUTE_AND_PRINT_TENSOR(ctx, x_prev);
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
@ -444,11 +437,6 @@ int main(int argc, char ** argv) {
// state[5 * i + 1] = x
ggml_cpy(ctx, x0, x_prev);
COMPUTE_AND_PRINT_TENSOR(ctx, xk);
COMPUTE_AND_PRINT_TENSOR(ctx, xv);
COMPUTE_AND_PRINT_TENSOR(ctx, xr);
COMPUTE_AND_PRINT_TENSOR(ctx, x_prev);
// r = torch.sigmoid(rw @ xr)
struct ggml_tensor * r = ggml_sigmoid(
ctx,
@ -497,21 +485,21 @@ int main(int argc, char ** argv) {
// e2 = torch.exp(k - qq)
e2 = ggml_exp(ctx, ggml_sub(ctx, k, qq));
// state[5 * i + 2] = e1 * aa + e2 * v
// todo must save result
// TODO Must save result
ggml_cpy(ctx, ggml_add(
ctx,
ggml_mul(ctx, e1, aa),
ggml_mul(ctx, e2, v)
), aa);
// state[5 * i + 3] = e1 * bb + e2
// todo must save result
// TODO Must save result
ggml_cpy(ctx, ggml_add(
ctx,
ggml_mul(ctx, e1, bb),
e2
), bb);
// state[5 * i + 4] = qq
// todo must save result
// TODO Must save result
ggml_cpy(ctx, qq, pp);
// ow @ (r * wkv)
x = ggml_add(
@ -523,8 +511,6 @@ int main(int argc, char ** argv) {
ggml_mul(ctx, r, wkv)
)
);
RWKV_LOG("RWKV %d completed", i);
COMPUTE_AND_PRINT_TENSOR(ctx, x);
}
// FFN/channel mixing
@ -546,7 +532,7 @@ int main(int argc, char ** argv) {
ggml_mul(ctx, x_prev, ggml_1_minus_x(ctx, layer.ffn_time_mix_r))
);
// state[5 * i + 0] = x
// todo must save result
// TODO Must save result
ggml_cpy(ctx, x0, x_prev);
// r = torch.sigmoid(rw @ xr)
@ -569,8 +555,6 @@ int main(int argc, char ** argv) {
ggml_mul_mat(ctx, layer.ffn_value, k)
)
);
RWKV_LOG("FFN %d completed", i);
COMPUTE_AND_PRINT_TENSOR(ctx, x);
}
}
@ -582,10 +566,31 @@ int main(int argc, char ** argv) {
compute_graph(ctx, logits);
// TODO -nan(ind) -nan(ind) ... (maybe implement exp/max first?)
PRINT_TENSOR(logits);
// TODO Save new state and logits
{
RWKV_LOG("Saving state to %s", state_out_path);
int32_t state_file_size = state_element_count * 4;
FILE * state_out_file = fopen(state_out_path, "wb");
RWKV_ASSERT(state_out_file != NULL, "Failed to open file %s", state_out_path);
RWKV_ASSERT(fwrite(state->data, 1, state_file_size, state_out_file) == state_file_size, "Failed to write state to a file");
fclose(state_out_file);
}
{
RWKV_LOG("Saving logits to %s", logits_out_path);
int32_t logits_file_size = n_vocab * 4;
FILE * logits_out_file = fopen(logits_out_path, "wb");
RWKV_ASSERT(logits_out_file != NULL, "Failed to open file %s", logits_out_path);
RWKV_ASSERT(fwrite(logits->data, 1, logits_file_size, logits_out_file) == logits_file_size, "Failed to write logits to a file");
fclose(logits_out_file);
}
ggml_free(ctx);

View File

@ -0,0 +1,63 @@
# Compares logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV.
# Usage: python compare_cpp_with_reference_implementation.py C:\RWKV-4-Pile-169M-20220807-8023.pth bin\Release\main_rwkv.exe C:\rwkv.cpp-169M.bin
import argparse
import subprocess
import rwkv_model
import torch
import numpy as np
from typing import List
def parse_args():
parser = argparse.ArgumentParser(description='Compare logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV')
parser.add_argument('torch_model_path', help='Path to PyTorch checkpoint file')
parser.add_argument('main_executable_path', help='Path to main rwkv.cpp executable file')
parser.add_argument('ggml_model_path', help='Path to rwkv.cpp checkpoint file')
return parser.parse_args()
def main() -> None:
args = parse_args()
# It's not important what exactly these tokens are; just that output of both model matches.
tokens: List[int] = [(i + 1) for i in range(32)]
state_path: str = './state.bin'
logits_path: str = './logits.bin'
reference_model: rwkv_model.RWKV_RNN = rwkv_model.RWKV_RNN(args.torch_model_path)
ref_logits, ref_state = None, None
for token in tokens:
print()
print(f'--- Token {token} ---')
subprocess.run(
[
args.main_executable_path,
args.ggml_model_path,
str(token),
# If this is the first token, let the script create a new state.
'' if ref_state is None else state_path,
state_path,
logits_path
],
check=True
)
with open(logits_path, 'rb') as logits_file:
actual_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
ref_logits, ref_state = reference_model.forward(token, ref_state)
difference: float = (torch.sum(ref_logits - actual_logits) / len(ref_logits)).item()
print(f'Reference logits: {ref_logits}')
print(f'Actual logits: {actual_logits}')
print('Difference per token: %.8f' % (difference,))
assert abs(difference) <= 0.000001, 'Difference is too big'
print('Test passes')
if __name__ == "__main__":
main()