Add support for Q5_0, Q5_1 and Q8_0 formats; remove Q4_1_O format (#44)
* Remove Q4_3 support * Add Q5_0, Q5_1, Q8_0 support * Add more clear message when loading Q4_3 model * Remove Q4_1_O format * Fix indentation in .gitmodules * Simplify sanitizer matrix
This commit is contained in:
parent
c736ef5411
commit
1198892888
|
@ -25,7 +25,6 @@ jobs:
|
|||
matrix:
|
||||
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||
build_type: [Debug, Release]
|
||||
accelerate: [ON, OFF]
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
@ -45,7 +44,7 @@ jobs:
|
|||
run: |
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DRWKV_SANITIZE_${{ matrix.sanitizer }}=ON -DGGML_SANITIZE_${{ matrix.sanitizer }}=ON -DRWKV_ACCELERATE=${{ matrix.accelerate }} -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake .. -DRWKV_SANITIZE_${{ matrix.sanitizer }}=ON -DGGML_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
|
||||
- name: Test
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
[submodule "ggml"]
|
||||
path = ggml
|
||||
url = https://github.com/saharNooby/ggml
|
||||
branch = master-2023-04-29
|
||||
|
|
|
@ -0,0 +1,53 @@
|
|||
# rwkv.cpp file format
|
||||
|
||||
This format is used by `rwkv.cpp` to store RWKV model checkpoints.
|
||||
|
||||
Preferred file extension: `.bin`
|
||||
|
||||
Specification in C-like pseudocode:
|
||||
|
||||
```
|
||||
RWKVModelFile {
|
||||
// All ints and floats are in machine byte order.
|
||||
// Magic is "ggml" string bytes.
|
||||
int32 magic = 0x67676d66;
|
||||
int32 version = 100;
|
||||
int32 n_vocab;
|
||||
int32 n_embed;
|
||||
int32 n_layer;
|
||||
// Data type of most of the parameters. See "Data types" below for possible values.
|
||||
int32 data_type;
|
||||
// Read until EOF.
|
||||
Parameter[] parameters;
|
||||
}
|
||||
|
||||
Parameter {
|
||||
int32 dim_count;
|
||||
int32 key_length;
|
||||
// Data type of the parameter. See "Data types" below for possible values.
|
||||
int32 data_type;
|
||||
// Compared to PyTorch's parameter.shape, dimension order is reversed here!
|
||||
int32[dim_count] shape;
|
||||
// Keys are like "emb.weight", "block.0.ln1.weight".
|
||||
uint8[key_length] key_utf8;
|
||||
// Length of the data array depends on parameter data type:
|
||||
// - FP32: 4 * element_count
|
||||
// - FP16: 2 * element_count
|
||||
// - QX_Y (quantized): element_count / QKX_Y * sizeof(block_qx_y)
|
||||
// See ggml.c for values of QK and block sizes of specific formats.
|
||||
byte[] data;
|
||||
}
|
||||
```
|
||||
|
||||
## Data types
|
||||
|
||||
- 0: `FP32`
|
||||
- 1: `FP16`
|
||||
- 2: `Q4_0`
|
||||
- 3: `Q4_1`
|
||||
- 4: *unused*
|
||||
- 5: `Q4_2`
|
||||
- 6: *unused*
|
||||
- 7: `Q5_0`
|
||||
- 8: `Q5_1`
|
||||
- 9: `Q8_0`
|
48
README.md
48
README.md
|
@ -2,18 +2,30 @@
|
|||
|
||||
This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [ggerganov/ggml](https://github.com/ggerganov/ggml).
|
||||
|
||||
Besides the usual **FP32**, it supports **FP16** and **quantized INT4** inference on CPU. This project is **CPU only**.
|
||||
|
||||
RWKV is a novel large language model architecture, [with the largest model in the family having 14B parameters](https://huggingface.co/BlinkDL/rwkv-4-pile-14b). In contrast to Transformer with `O(n^2)` attention, RWKV requires only state from previous step to calculate logits. This makes RWKV very CPU-friendly on large context lenghts.
|
||||
Besides the usual **FP32**, it supports **FP16**, **quantized INT4** and **quantized INT8** inference. This project is **CPU only**.
|
||||
|
||||
This project provides [a C library rwkv.h](rwkv.h) and [a convinient Python wrapper](rwkv%2Frwkv_cpp_model.py) for it.
|
||||
|
||||
RWKV is a novel large language model architecture, [with the largest model in the family having 14B parameters](https://huggingface.co/BlinkDL/rwkv-4-pile-14b). In contrast to Transformer with `O(n^2)` attention, RWKV requires only state from previous step to calculate logits. This makes RWKV very CPU-friendly on large context lenghts.
|
||||
|
||||
Loading LoRA checkpoints in [Blealtan's format](https://github.com/Blealtan/RWKV-LM-LoRA) is supported through [merge_lora_into_ggml.py script](rwkv%2Fmerge_lora_into_ggml.py).
|
||||
|
||||
**TODO (contributions welcome!)**:
|
||||
### Quality and performance
|
||||
|
||||
1. Measure latency and perplexity of different model sizes (169M to 14B) and data types (`FP32`, `FP16`, `Q4_0`, `Q4_1`, `Q4_1_O`)
|
||||
2. Make required memory calculation more robust (see [#4](https://github.com/saharNooby/rwkv.cpp/issues/4))
|
||||
If you use `rwkv.cpp` for anything serious, please [test all available formats for perplexity and latency](rwkv%2Fmeasure_pexplexity.py) on a representative dataset, and decide which trade-off is best for you.
|
||||
|
||||
Below table is for reference only. Measurements were made on 4C/8T x86 CPU with AVX2, 4 threads.
|
||||
|
||||
| Format | Perplexity (169M) | Latency, ms (1.5B) | File size, GB (1.5B) |
|
||||
|-----------|-------------------|--------------------|----------------------|
|
||||
| `Q4_0` | 17.507 | *76* | **1.53** |
|
||||
| `Q4_1` | 17.187 | **72** | 1.68 |
|
||||
| `Q4_2` | 17.060 | 85 | **1.53** |
|
||||
| `Q5_0` | 16.194 | 78 | *1.60* |
|
||||
| `Q5_1` | 15.851 | 81 | 1.68 |
|
||||
| `Q8_0` | *15.652* | 89 | 2.13 |
|
||||
| `FP16` | **15.623** | 117 | 2.82 |
|
||||
| `FP32` | **15.623** | 198 | 5.64 |
|
||||
|
||||
## How to use
|
||||
|
||||
|
@ -77,26 +89,16 @@ python rwkv/convert_pytorch_to_ggml.py ~/Downloads/RWKV-4-Pile-169M-20220807-802
|
|||
|
||||
#### 3.1. Optionally, quantize the model
|
||||
|
||||
To convert the model into INT4 quantized format, run:
|
||||
To convert the model into one of quantized formats from the table above, run:
|
||||
|
||||
```commandline
|
||||
# Windows
|
||||
python rwkv\quantize.py C:\rwkv.cpp-169M.bin C:\rwkv.cpp-169M-Q4_1_O.bin 4
|
||||
python rwkv\quantize.py C:\rwkv.cpp-169M.bin C:\rwkv.cpp-169M-Q4_2.bin Q4_2
|
||||
|
||||
# Linux / MacOS
|
||||
python rwkv/quantize.py ~/Downloads/rwkv.cpp-169M.bin ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin 4
|
||||
python rwkv/quantize.py ~/Downloads/rwkv.cpp-169M.bin ~/Downloads/rwkv.cpp-169M-Q4_2.bin Q4_2
|
||||
```
|
||||
|
||||
Formats available:
|
||||
|
||||
- `6`: `Q4_3`, OK quality, fast.
|
||||
- `5`: `Q4_2`, poor quality, fast.
|
||||
- `4`: `Q4_1_O`, best quality, slow (20% slower than `FP16`).
|
||||
- `3`: `Q4_1`, poor quality, very fast.
|
||||
- `2`: `Q4_0`, worst quality, very fast.
|
||||
|
||||
If you use `rwkv.cpp` for anything serious (just having fun is serious enough!), please [test all available formats for perplexity and latency](rwkv%2Fmeasure_pexplexity.py) on a representative dataset, and decide which trade-off is best for you.
|
||||
|
||||
### 4. Run the model
|
||||
|
||||
**Requirements**: Python 3.x with [PyTorch](https://pytorch.org/get-started/locally/) and [tokenizers](https://pypi.org/project/tokenizers/).
|
||||
|
@ -107,20 +109,20 @@ To generate some text, run:
|
|||
|
||||
```commandline
|
||||
# Windows
|
||||
python rwkv\generate_completions.py C:\rwkv.cpp-169M-Q4_1_O.bin
|
||||
python rwkv\generate_completions.py C:\rwkv.cpp-169M-Q4_2.bin
|
||||
|
||||
# Linux / MacOS
|
||||
python rwkv/generate_completions.py ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin
|
||||
python rwkv/generate_completions.py ~/Downloads/rwkv.cpp-169M-Q4_2.bin
|
||||
```
|
||||
|
||||
To chat with a bot, run:
|
||||
|
||||
```commandline
|
||||
# Windows
|
||||
python rwkv\chat_with_bot.py C:\rwkv.cpp-169M-Q4_1_O.bin
|
||||
python rwkv\chat_with_bot.py C:\rwkv.cpp-169M-Q4_2.bin
|
||||
|
||||
# Linux / MacOS
|
||||
python rwkv/chat_with_bot.py ~/Downloads/rwkv.cpp-169M-Q4_1_O.bin
|
||||
python rwkv/chat_with_bot.py ~/Downloads/rwkv.cpp-169M-Q4_2.bin
|
||||
```
|
||||
|
||||
Edit [generate_completions.py](rwkv%2Fgenerate_completions.py) or [chat_with_bot.py](rwkv%2Fchat_with_bot.py) to change prompts and sampling settings.
|
||||
|
|
2
ggml
2
ggml
|
@ -1 +1 @@
|
|||
Subproject commit bfa8d5b5ab4ffbae4c5f97525c3890f38619056d
|
||||
Subproject commit a0687a3a3c4b31811219d7a61adfb66230b09201
|
124
rwkv.cpp
124
rwkv.cpp
|
@ -15,8 +15,6 @@
|
|||
|
||||
// --- Utilities ---
|
||||
|
||||
#define FP32_SIZE 4
|
||||
|
||||
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
|
||||
#define RWKV_ASSERT_FALSE(x, ...) \
|
||||
do { \
|
||||
|
@ -43,16 +41,34 @@ bool read_int32(FILE * file, int32_t * dest) {
|
|||
return true;
|
||||
}
|
||||
|
||||
static const ggml_type FORMAT_TYPE_TO_GGML_TYPE[7] = {
|
||||
#define GGML_TYPE_UNKNOWN GGML_TYPE_COUNT
|
||||
|
||||
#define FORMAT_TYPE_COUNT 10
|
||||
|
||||
static const ggml_type FORMAT_TYPE_TO_GGML_TYPE[FORMAT_TYPE_COUNT] = {
|
||||
GGML_TYPE_F32,
|
||||
GGML_TYPE_F16,
|
||||
GGML_TYPE_Q4_0,
|
||||
GGML_TYPE_Q4_1,
|
||||
GGML_TYPE_Q4_1_O,
|
||||
GGML_TYPE_UNKNOWN, // Unused
|
||||
GGML_TYPE_Q4_2,
|
||||
GGML_TYPE_Q4_3
|
||||
GGML_TYPE_UNKNOWN, // Unused
|
||||
GGML_TYPE_Q5_0,
|
||||
GGML_TYPE_Q5_1,
|
||||
GGML_TYPE_Q8_0
|
||||
};
|
||||
|
||||
static int32_t format_name_to_format_type(const char * format_name) {
|
||||
if (strcmp(format_name, "Q4_0") == 0) return 2;
|
||||
if (strcmp(format_name, "Q4_1") == 0) return 3;
|
||||
if (strcmp(format_name, "Q4_2") == 0) return 5;
|
||||
if (strcmp(format_name, "Q5_0") == 0) return 7;
|
||||
if (strcmp(format_name, "Q5_1") == 0) return 8;
|
||||
if (strcmp(format_name, "Q8_0") == 0) return 9;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
// --- Model definition and loading utilities ---
|
||||
|
||||
struct rwkv_layer {
|
||||
|
@ -206,7 +222,17 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
|||
RWKV_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
||||
|
||||
read_int32(file, &(model->data_type));
|
||||
RWKV_ASSERT_NULL(model->data_type >= 0 && model->data_type <= 6, "Unsupported model data type %d", model->data_type);
|
||||
RWKV_ASSERT_NULL(model->data_type >= 0 && model->data_type < FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type);
|
||||
|
||||
RWKV_ASSERT_NULL(
|
||||
model->data_type != 4,
|
||||
"Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
||||
);
|
||||
|
||||
RWKV_ASSERT_NULL(
|
||||
model->data_type != 6,
|
||||
"Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
||||
);
|
||||
|
||||
// Parameter tensors would take at least this amount in memory.
|
||||
size_t file_size;
|
||||
|
@ -256,10 +282,12 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
|||
|
||||
int32_t data_type;
|
||||
read_int32(file, &data_type);
|
||||
RWKV_ASSERT_NULL(data_type >= 0 && data_type <= 6, "Unsupported parameter data type %d", data_type);
|
||||
RWKV_ASSERT_NULL(data_type >= 0 && data_type < FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);
|
||||
|
||||
ggml_type ggml_data_type = FORMAT_TYPE_TO_GGML_TYPE[data_type];
|
||||
|
||||
RWKV_ASSERT_NULL(ggml_data_type != GGML_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
|
||||
|
||||
struct ggml_tensor * tensor;
|
||||
|
||||
int32_t x = -1;
|
||||
|
@ -356,7 +384,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
|||
// self.layer_norm(x, self.w.blocks[i].ln1)
|
||||
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
||||
// state[5 * i + 1]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
|
||||
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
||||
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
||||
|
@ -391,9 +419,9 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
|||
// aa = state[5 * i + 2]
|
||||
// bb = state[5 * i + 3]
|
||||
// pp = state[5 * i + 4]
|
||||
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (5 * i + 2) * n_embed * sizeof(float));
|
||||
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (5 * i + 3) * n_embed * sizeof(float));
|
||||
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (5 * i + 4) * n_embed * sizeof(float));
|
||||
|
||||
// ww = time_first + k
|
||||
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
||||
|
@ -456,7 +484,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
|||
// self.layer_norm(x, self.w.blocks[i].ln2)
|
||||
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
||||
// state[5 * i + 0]
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * FP32_SIZE);
|
||||
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
|
||||
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
||||
struct ggml_tensor * xk = ggml_add(
|
||||
|
@ -549,12 +577,12 @@ bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float
|
|||
for (int i = 0; i < n_layer; i++) {
|
||||
// state[5 * i + 4] = -1e30
|
||||
ggml_set_f32(
|
||||
ggml_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * FP32_SIZE),
|
||||
ggml_view_1d(ctx->ctx, ctx->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)),
|
||||
-1e30F
|
||||
);
|
||||
}
|
||||
} else {
|
||||
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * FP32_SIZE);
|
||||
memcpy(ctx->state->data, state_in, ctx->state->ne[0] * sizeof(float));
|
||||
}
|
||||
|
||||
ggml_graph_compute(ctx->ctx, ctx->graph);
|
||||
|
@ -562,10 +590,10 @@ bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float
|
|||
for (size_t i = 0; i < size_t(n_layer * 5); i++) {
|
||||
struct ggml_tensor * part = ctx->state_parts[i];
|
||||
|
||||
memcpy(state_out + i * n_embed, part->data, part->ne[0] * FP32_SIZE);
|
||||
memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float));
|
||||
}
|
||||
|
||||
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * FP32_SIZE);
|
||||
memcpy(logits_out, ctx->logits->data, ctx->logits->ne[0] * sizeof(float));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -579,8 +607,14 @@ void rwkv_free(struct rwkv_context * ctx) {
|
|||
free(ctx);
|
||||
}
|
||||
|
||||
bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, uint32_t q_type) {
|
||||
RWKV_ASSERT_FALSE(q_type == 2 || q_type == 3 || q_type == 4 || q_type == 5 || q_type == 6, "Unsupported quantization type %d", q_type);
|
||||
bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) {
|
||||
int32_t format_type = format_name_to_format_type(format_name);
|
||||
|
||||
RWKV_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name);
|
||||
|
||||
ggml_type type = FORMAT_TYPE_TO_GGML_TYPE[format_type];
|
||||
|
||||
RWKV_ASSERT_FALSE(type != GGML_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
|
||||
|
||||
// Needed to initialize FP16 lookup table
|
||||
{
|
||||
|
@ -589,8 +623,6 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
ggml_free(ctx);
|
||||
}
|
||||
|
||||
ggml_type type = FORMAT_TYPE_TO_GGML_TYPE[q_type];
|
||||
|
||||
printf("Loading model from '%s'\n", model_file_path_in);
|
||||
|
||||
auto finp = std::ifstream(model_file_path_in, std::ios::binary);
|
||||
|
@ -623,7 +655,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
|
||||
RWKV_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type);
|
||||
|
||||
data_type = q_type;
|
||||
data_type = format_type;
|
||||
|
||||
fout.write((char *) &n_vocab, sizeof(n_vocab));
|
||||
fout.write((char *) &n_embed, sizeof(n_embed));
|
||||
|
@ -657,6 +689,12 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
break;
|
||||
}
|
||||
|
||||
RWKV_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type);
|
||||
|
||||
ggml_type parameter_ggml_type = FORMAT_TYPE_TO_GGML_TYPE[parameter_data_type];
|
||||
|
||||
RWKV_ASSERT_FALSE(parameter_ggml_type != GGML_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);
|
||||
|
||||
int32_t nelements = 1;
|
||||
int32_t ne[2] = { 1, 1 };
|
||||
for (int i = 0; i < n_dims; ++i) {
|
||||
|
@ -668,18 +706,9 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
finp.read(&name[0], key_length);
|
||||
|
||||
{
|
||||
static const char * parameter_data_type_str[] = {
|
||||
"F32",
|
||||
"F16",
|
||||
"Q4_0",
|
||||
"Q4_1",
|
||||
"Q4_1_O",
|
||||
"Q4_2",
|
||||
"Q4_3"
|
||||
};
|
||||
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], parameter_data_type_str[parameter_data_type]);
|
||||
printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ggml_type_name(parameter_ggml_type));
|
||||
|
||||
total_size_orig += (size_t) (nelements * ggml_type_sizef(FORMAT_TYPE_TO_GGML_TYPE[parameter_data_type]));
|
||||
total_size_orig += (size_t) (nelements * ggml_type_sizef(parameter_ggml_type));
|
||||
}
|
||||
|
||||
// Quantize only 2D tensors, except embedding and head matrices.
|
||||
|
@ -708,7 +737,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
|
||||
}
|
||||
|
||||
parameter_data_type = q_type;
|
||||
parameter_data_type = format_type;
|
||||
} else {
|
||||
const int bytes_per_element = (parameter_data_type == 0) ? sizeof(float) : sizeof(uint16_t);
|
||||
data_u8.resize(nelements * bytes_per_element);
|
||||
|
@ -735,27 +764,24 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
|||
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1_O:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_1_o(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
break;
|
||||
case GGML_TYPE_Q4_2:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_2(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_3:
|
||||
{
|
||||
cur_size = ggml_quantize_q4_3(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
cur_size = ggml_quantize_q5_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
cur_size = ggml_quantize_q5_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
cur_size = ggml_quantize_q8_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
|
||||
break;
|
||||
default: {
|
||||
fprintf(stderr, "unsupported quantization type %d\n", type);
|
||||
return false;
|
||||
}
|
||||
|
|
13
rwkv.h
13
rwkv.h
|
@ -52,12 +52,19 @@ extern "C" {
|
|||
// Frees all allocated memory and the context.
|
||||
RWKV_API void rwkv_free(struct rwkv_context * ctx);
|
||||
|
||||
// Quantizes FP32 or FP16 model to one of INT4 formats.
|
||||
// Quantizes FP32 or FP16 model to one of quantized formats.
|
||||
// Returns false on any error. Error messages would be printed to stderr.
|
||||
// - model_file_path_in: path to model file in ggml format, must be either FP32 or FP16.
|
||||
// - model_file_path_out: quantized model will be written here.
|
||||
// - q_type: set to 2 for GGML_TYPE_Q4_0, 3 for GGML_TYPE_Q4_1, 4 for GGML_TYPE_Q4_1_O, 5 for GGML_TYPE_Q4_2, 6 for GGML_TYPE_Q4_3.
|
||||
RWKV_API bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, uint32_t q_type);
|
||||
// - format_name: must be one of available format names below.
|
||||
// Available format names:
|
||||
// - Q4_0
|
||||
// - Q4_1
|
||||
// - Q4_2
|
||||
// - Q5_0
|
||||
// - Q5_1
|
||||
// - Q8_0
|
||||
RWKV_API bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name);
|
||||
|
||||
// Returns system information string.
|
||||
RWKV_API const char * rwkv_get_system_info_string(void);
|
||||
|
|
|
@ -1,39 +1,7 @@
|
|||
# Converts an RWKV model checkpoint to an rwkv.cpp compatible file.
|
||||
# Converts an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file.
|
||||
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float32
|
||||
# Get model checkpoints from https://huggingface.co/BlinkDL
|
||||
|
||||
# File format:
|
||||
#
|
||||
# RWKVModelFile {
|
||||
# // All ints and floats are in machine byte order.
|
||||
# // Magic is "ggml" string bytes.
|
||||
# int32 magic = 0x67676d66;
|
||||
# int32 version = 100;
|
||||
# int32 n_vocab;
|
||||
# int32 n_embed;
|
||||
# int32 n_layer;
|
||||
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O, 5 if Q4_2, 6 if Q4_3.
|
||||
# int32 data_type;
|
||||
# // Read until EOF.
|
||||
# Parameter[] parameters;
|
||||
# }
|
||||
#
|
||||
# Parameter {
|
||||
# int32 dim_count;
|
||||
# int32 key_length;
|
||||
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O, 5 if Q4_2, 6 if Q4_3.
|
||||
# int32 data_type;
|
||||
# // Compared to PyTorch's tensor.shape, dimension order is reversed here!
|
||||
# int32[dim_count] shape;
|
||||
# // Keys are like "emb.weight", "block.0.ln1.weight".
|
||||
# uint8[key_length] key_utf8;
|
||||
# // float32: 4 * element_count bytes.
|
||||
# // float16: 2 * element_count bytes.
|
||||
# // Q4_0: element_count / 32 * 20 bytes.
|
||||
# // Q4_1: element_count / 32 * 24 bytes.
|
||||
# // Q4_1_O: element_count / 32 * 24 bytes.
|
||||
# byte[] data;
|
||||
# }
|
||||
# See FILE_FORMAT.md for the documentation on the file format.
|
||||
|
||||
import os
|
||||
import argparse
|
||||
|
@ -42,7 +10,7 @@ import torch
|
|||
from typing import Dict
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint to an rwkv.cpp compatible file')
|
||||
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file')
|
||||
parser.add_argument('src_path', help='Path to PyTorch checkpoint file')
|
||||
parser.add_argument('dest_path', help='Path to rwkv.cpp checkpoint file, will be overwritten')
|
||||
parser.add_argument('data_type', help='Data type, float16 or float32', type=str, choices=['float16', 'float32'], default='float32')
|
||||
|
|
|
@ -1,19 +1,17 @@
|
|||
# Quantizes rwkv.cpp model file from FP32 or FP16 to Q4_0, Q4_1, Q4_1_O, Q4_2, Q4_3.
|
||||
# Usage: python quantize.py bin\Release\rwkv.dll C:\rwkv.cpp-169M-float32.bin C:\rwkv.cpp-169M-q4_1_o.bin 4
|
||||
# Quantizes rwkv.cpp model file from FP32 or FP16.
|
||||
# Available format names are in rwkv_cpp_shared_library.QUANTIZED_FORMAT_NAMES
|
||||
# Usage: python quantize.py bin\Release\rwkv.dll C:\rwkv.cpp-169M-FP32.bin C:\rwkv.cpp-169M-Q4_2.bin Q4_2
|
||||
|
||||
import argparse
|
||||
import rwkv_cpp_shared_library
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Quantize rwkv.cpp model file from FP32 or FP16 to Q4_0 or Q4_1')
|
||||
format_names = rwkv_cpp_shared_library.QUANTIZED_FORMAT_NAMES
|
||||
|
||||
parser = argparse.ArgumentParser(description='Quantize rwkv.cpp model file from FP32 or FP16')
|
||||
parser.add_argument('src_path', help='Path to FP32/FP16 checkpoint file')
|
||||
parser.add_argument('dest_path', help='Path to resulting checkpoint file, will be overwritten')
|
||||
parser.add_argument('data_type', help='Data type, '
|
||||
'2 (GGML_TYPE_Q4_0), '
|
||||
'3 (GGML_TYPE_Q4_1), '
|
||||
'4 (GGML_TYPE_Q4_1_O), '
|
||||
'5 (Q4_2), '
|
||||
'6 (Q4_3)', type=int, choices=[2, 3, 4, 5, 6], default=4)
|
||||
parser.add_argument('format_name', help='Format name, one of ' + ', '.join(format_names), type=str, choices=format_names, default='Q4_2')
|
||||
return parser.parse_args()
|
||||
|
||||
def main() -> None:
|
||||
|
@ -24,7 +22,7 @@ def main() -> None:
|
|||
library.rwkv_quantize_model_file(
|
||||
args.src_path,
|
||||
args.dest_path,
|
||||
args.data_type
|
||||
args.format_name
|
||||
)
|
||||
|
||||
print('Done')
|
||||
|
|
|
@ -4,6 +4,14 @@ import ctypes
|
|||
import pathlib
|
||||
from typing import Optional
|
||||
|
||||
QUANTIZED_FORMAT_NAMES = (
|
||||
'Q4_0',
|
||||
'Q4_1',
|
||||
'Q4_2',
|
||||
'Q5_0',
|
||||
'Q5_1',
|
||||
'Q8_0'
|
||||
)
|
||||
|
||||
P_FLOAT = ctypes.POINTER(ctypes.c_float)
|
||||
|
||||
|
@ -54,7 +62,7 @@ class RWKVSharedLibrary:
|
|||
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
|
||||
self.library.rwkv_free.restype = None
|
||||
|
||||
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_uint32]
|
||||
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
|
||||
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_get_system_info_string.argtypes = []
|
||||
|
@ -149,7 +157,7 @@ class RWKVSharedLibrary:
|
|||
|
||||
ctx.ptr = ctypes.cast(0, ctypes.c_void_p)
|
||||
|
||||
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, q_type: int) -> None:
|
||||
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, format_name: str) -> None:
|
||||
"""
|
||||
Quantizes FP32 or FP16 model to one of INT4 formats.
|
||||
Throws an exception in case of any error. Error messages would be printed to stderr.
|
||||
|
@ -160,14 +168,16 @@ class RWKVSharedLibrary:
|
|||
Path to model file in ggml format, must be either FP32 or FP16.
|
||||
model_file_path_out : str
|
||||
Quantized model will be written here.
|
||||
q_type : int
|
||||
Set to 2 for GGML_TYPE_Q4_0, set to 3 for GGML_TYPE_Q4_1.
|
||||
format_name : str
|
||||
One of QUANTIZED_FORMAT_NAMES.
|
||||
"""
|
||||
|
||||
assert format_name in QUANTIZED_FORMAT_NAMES, f'Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}'
|
||||
|
||||
assert self.library.rwkv_quantize_model_file(
|
||||
model_file_path_in.encode('utf-8'),
|
||||
model_file_path_out.encode('utf-8'),
|
||||
ctypes.c_uint32(q_type)
|
||||
format_name.encode('utf-8')
|
||||
), 'rwkv_quantize_model_file failed, check stderr'
|
||||
|
||||
def rwkv_get_system_info_string(self) -> str:
|
||||
|
|
|
@ -10,6 +10,4 @@ file(COPY tiny-rwkv-660K-FP16.bin DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
|||
file(COPY expected_logits.bin DESTINATION ${CMAKE_CURRENT_BINARY_DIR})
|
||||
|
||||
rwkv_add_test(test_ggml_basics.c)
|
||||
rwkv_add_test(test_Q4_1_O.c)
|
||||
rwkv_add_test(test_Q4_1_O_large_matmul.c)
|
||||
rwkv_add_test(test_tiny_rwkv.c)
|
||||
|
|
|
@ -1,174 +0,0 @@
|
|||
// Tests that Q4_1_O basics (quantization, dequantization, matmul) work.
|
||||
|
||||
#include "ggml.h"
|
||||
#include "rwkv.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#define GET_ELEMENT_F32(tensor, i) (((float *) tensor->data)[i])
|
||||
|
||||
#define SET_ELEMENT_F32(tensor, i, value) ((float *) tensor->data)[i] = value
|
||||
|
||||
#define ASSERT(x, ...) {\
|
||||
if (!(x)) {\
|
||||
fprintf(stderr, "*** Assertion failed ***\n");\
|
||||
fprintf(stderr, __VA_ARGS__);\
|
||||
fprintf(stderr, "\n%s:%d\n", __FILE__, __LINE__);\
|
||||
abort();\
|
||||
}\
|
||||
}
|
||||
|
||||
// ---
|
||||
|
||||
#define QK 32
|
||||
|
||||
// Copied from ggml.c
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
ggml_fp16_t m;
|
||||
uint16_t outlier_index;
|
||||
ggml_fp16_t outlier_value;
|
||||
uint8_t qs[QK / 2];
|
||||
} block_q4_1_o;
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
ASSERT(sizeof(block_q4_1_o) == 8 + QK / 2, "Wrong q4_1_o block size/padding");
|
||||
|
||||
// Needed to initialize FP16 lookup table
|
||||
{
|
||||
struct ggml_init_params params = { 0, NULL, false };
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
ggml_free(ctx);
|
||||
}
|
||||
|
||||
fprintf(stderr, "System info: %s\n", rwkv_get_system_info_string());
|
||||
|
||||
quantize_fns_t quantize_fns = ggml_internal_get_quantize_fn(GGML_TYPE_Q4_1_O);
|
||||
|
||||
float src[QK];
|
||||
uint8_t dest[24];
|
||||
|
||||
// 1..32
|
||||
for (int i = 0; i < QK; i++) {
|
||||
src[i] = (float) (i + 1);
|
||||
}
|
||||
|
||||
// --- Quantization ---
|
||||
(quantize_fns.quantize_row_q)(src, dest, QK);
|
||||
|
||||
float delta_result = ggml_fp16_to_fp32(((block_q4_1_o *) dest)->d);
|
||||
float delta_expected = (src[30] - src[0]) / ((1 << 4) - 1);
|
||||
ASSERT(delta_result == delta_expected, "%f, %f", delta_result, delta_expected);
|
||||
|
||||
float min_result = ggml_fp16_to_fp32(((block_q4_1_o *) dest)->m);
|
||||
float min_expected = src[0];
|
||||
ASSERT(min_result == min_expected, "%f, %f", min_result, min_expected);
|
||||
|
||||
uint16_t outlier_index = ((block_q4_1_o *) dest)->outlier_index;
|
||||
uint16_t outlier_index_expected = 31;
|
||||
ASSERT(outlier_index == outlier_index_expected, "%d, %d", outlier_index, outlier_index_expected);
|
||||
|
||||
float outlier_value_result = ggml_fp16_to_fp32(((block_q4_1_o *) dest)->outlier_value);
|
||||
float outlier_value_expected = src[31];
|
||||
ASSERT(outlier_value_result == outlier_value_expected, "%f, %f", outlier_value_result, outlier_value_expected);
|
||||
|
||||
for (int i = 0; i < QK - 1; i++) {
|
||||
uint8_t q4_result = (i % 2) ? (dest[sizeof(float) * 2 + i / 2] >> 4) : (dest[sizeof(float) * 2 + i / 2] & 0xF);
|
||||
uint8_t q4_expected = roundf((src[i] - min_expected) / delta_expected);
|
||||
ASSERT(q4_result == q4_expected, "%d: %d, %d", i, q4_result, q4_expected);
|
||||
}
|
||||
|
||||
// --- Dequantization ---
|
||||
float dequantized[QK];
|
||||
(quantize_fns.dequantize_row_q)(dest, dequantized, QK);
|
||||
|
||||
for (int i = 0; i < QK; i++) {
|
||||
float actual = dequantized[i];
|
||||
float expected = src[i];
|
||||
float diff = fabsf(actual - expected);
|
||||
// Difference looks huge, but the range is 0..31 -- compared to the range, it is not that huge
|
||||
ASSERT(diff <= 1.0F, "%d: %f, %f", i, actual, expected);
|
||||
}
|
||||
|
||||
// --- Matmul ---
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 16 * 1024,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * mat = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, QK, 4);
|
||||
|
||||
// Note rare outlier values: -88, -83, etc.
|
||||
float mat_values[QK * 4] = {
|
||||
-1.371795F, -88.901100F, -0.412088F, -0.486081F, 1.280220F, -1.067033F, 1.371795F, 1.099267F, 1.079487F, -0.204029F, 1.237729F, -0.563736F,
|
||||
-0.633333F, 0.700000F, 0.211355F, 0.510989F, -0.981319F, -0.456777F, 0.011355F, 0.911722F, -0.976191F, 0.078022F, -0.757143F, -0.744689F,
|
||||
-0.768865F, 0.656777F, 0.141026F, -0.038462F, 1.023810F, 1.221612F, -0.393773F, 1.135165F, -1.341758F, -83.113556F, 1.291209F, 0.313187F,
|
||||
1.032601F, -0.401099F, 1.482418F, 0.823077F, 0.619414F, -0.583516F, 0.527106F, 1.489011F, 1.327839F, 0.846520F, -1.437729F, 0.461172F,
|
||||
1.031136F, 0.293407F, 0.284615F, -1.102198F, -1.481685F, 0.602564F, -0.480952F, -0.745421F, -1.376190F, -1.319780F, 1.338828F, -1.062637F,
|
||||
1.266300F, 0.360073F, 1.472894F, 1.063370F, -0.833333F, 49.047626F, -1.229670F, 1.079487F, -0.004762F, -0.696337F, -0.541758F, 0.993773F,
|
||||
-1.323443F, 0.908059F, -1.059707F, 0.965201F, -0.376923F, 1.158608F, -1.100000F, -1.002564F, -0.355678F, 1.157143F, 0.450916F, -0.497802F,
|
||||
1.270696F, 0.028205F, 1.075092F, 1.462637F, 0.252381F, -0.579121F, -0.880220F, -0.041392F, -1.017949F, -0.754945F, 0.582784F, -1.193773F,
|
||||
-1.411355F, 122.014656F, -1.053114F, -0.949084F, 0.448718F, 0.209890F, 0.815751F, 0.071429F, -0.125641F, -0.600366F, -0.914652F, -0.956410F,
|
||||
-0.278755F, 0.235531F, -0.573260F, -1.484615F, -0.327839F, -0.297070F, -1.195238F, -1.160073F, 0.932967F, -0.606960F, 0.798901F, 0.212088F,
|
||||
0.113187F, -0.116117F, -0.532967F, 0.077289F, 0.016484F, 1.352747F, -1.487546F, -1.363736F
|
||||
};
|
||||
|
||||
for (int i = 0; i < QK * 4; i++) {
|
||||
SET_ELEMENT_F32(mat, i, mat_values[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * quantized_mat = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_1_O, QK, 4);
|
||||
|
||||
int64_t histogram[16];
|
||||
|
||||
ggml_quantize_q4_1_o(mat->data, quantized_mat->data, QK * 4, QK, histogram);
|
||||
|
||||
struct ggml_tensor * vec = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, QK);
|
||||
|
||||
float vec_values[] = {
|
||||
-0.578388F, -0.770330F, -0.183516F, 0.264103F, 0.585714F, -0.226740F, 1.319048F, 0.652381F,
|
||||
-1.161538F, 0.428205F, -0.907326F, -0.837729F, 0.673626F, 0.248718F, 0.392308F, -0.225275F,
|
||||
0.910989F, 0.483150F, -0.669963F, -0.412088F, 0.954945F, 0.826007F, 0.113919F, 0.095604F,
|
||||
-1.042125F, -1.094872F, 0.589377F, -0.426007F, 0.669231F, -0.243590F, -0.179121F, 0.325641F
|
||||
};
|
||||
|
||||
for (int i = 0; i < QK; i++) {
|
||||
SET_ELEMENT_F32(vec, i, vec_values[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * expected_result = ggml_mul_mat(ctx, mat, vec);
|
||||
struct ggml_tensor * quantized_result = ggml_mul_mat(ctx, quantized_mat, vec);
|
||||
|
||||
struct ggml_cgraph graph = ggml_build_forward(expected_result);
|
||||
ggml_build_forward_expand(&graph, quantized_result);
|
||||
graph.n_threads = 2;
|
||||
ggml_graph_compute(ctx, &graph);
|
||||
|
||||
float diff_sum = 0.0F;
|
||||
|
||||
for (int i = 0; i < 4; i++) {
|
||||
fprintf(
|
||||
stderr,
|
||||
"[%d] expected %f, actual %f\n",
|
||||
i,
|
||||
GET_ELEMENT_F32(expected_result, i),
|
||||
GET_ELEMENT_F32(quantized_result, i)
|
||||
);
|
||||
|
||||
diff_sum += fabsf(GET_ELEMENT_F32(expected_result, i) - GET_ELEMENT_F32(quantized_result, i));
|
||||
}
|
||||
|
||||
float diff_average = diff_sum / 4;
|
||||
|
||||
// If Q4_1_O format works correctly, difference should be this or lower
|
||||
ASSERT(diff_average <= 0.112F, "Unexpected average difference value %f", diff_average);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -1,86 +0,0 @@
|
|||
// Tests that Q4_1_O matmul on a large matrix works (does not crash, etc.)
|
||||
|
||||
#include "ggml.h"
|
||||
#include "rwkv.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#define GET_ELEMENT_F32(tensor, i) (((float *) tensor->data)[i])
|
||||
|
||||
#define SET_ELEMENT_F32(tensor, i, value) ((float *) tensor->data)[i] = value
|
||||
|
||||
#define ASSERT(x, ...) {\
|
||||
if (!(x)) {\
|
||||
fprintf(stderr, "*** Assertion failed ***\n");\
|
||||
fprintf(stderr, __VA_ARGS__);\
|
||||
fprintf(stderr, "\n%s:%d\n", __FILE__, __LINE__);\
|
||||
abort();\
|
||||
}\
|
||||
}
|
||||
|
||||
#define RANDOM_FLOAT() (((rand() & 0xFFF) / ((float) 0xFFF) - 0.5F) * 3.0F)
|
||||
|
||||
// ---
|
||||
|
||||
#define QK 32
|
||||
#define MATRIX_SIZE 1024
|
||||
|
||||
int main(int argc, const char ** argv) {
|
||||
srand(42);
|
||||
|
||||
struct ggml_init_params params = {
|
||||
.mem_size = 8 * 1024 * 1024,
|
||||
.mem_buffer = NULL,
|
||||
.no_alloc = false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
struct ggml_tensor * mat = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, MATRIX_SIZE, MATRIX_SIZE);
|
||||
|
||||
for (int i = 0; i < MATRIX_SIZE * MATRIX_SIZE; i++) {
|
||||
SET_ELEMENT_F32(mat, i, RANDOM_FLOAT());
|
||||
}
|
||||
|
||||
// Add some outliers
|
||||
for (int i = 0; i < MATRIX_SIZE; i++) {
|
||||
SET_ELEMENT_F32(mat, i * MATRIX_SIZE + 1, RANDOM_FLOAT() * 100.0F);
|
||||
}
|
||||
|
||||
struct ggml_tensor * quantized_mat = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_1_O, MATRIX_SIZE, MATRIX_SIZE);
|
||||
|
||||
int64_t histogram[16];
|
||||
|
||||
ggml_quantize_q4_1_o(mat->data, quantized_mat->data, MATRIX_SIZE * MATRIX_SIZE, QK, histogram);
|
||||
|
||||
struct ggml_tensor * vec = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, MATRIX_SIZE);
|
||||
|
||||
for (int i = 0; i < MATRIX_SIZE; i++) {
|
||||
SET_ELEMENT_F32(vec, i, RANDOM_FLOAT());
|
||||
}
|
||||
|
||||
struct ggml_tensor * expected_result = ggml_mul_mat(ctx, mat, vec);
|
||||
struct ggml_tensor * quantized_result = ggml_mul_mat(ctx, quantized_mat, vec);
|
||||
|
||||
struct ggml_cgraph graph = ggml_build_forward(expected_result);
|
||||
ggml_build_forward_expand(&graph, quantized_result);
|
||||
graph.n_threads = 4;
|
||||
ggml_graph_compute(ctx, &graph);
|
||||
|
||||
float diff_sum = 0.0F;
|
||||
|
||||
for (int i = 0; i < MATRIX_SIZE; i++) {
|
||||
diff_sum += fabsf(GET_ELEMENT_F32(expected_result, i) - GET_ELEMENT_F32(quantized_result, i));
|
||||
}
|
||||
|
||||
float diff_average = diff_sum / MATRIX_SIZE;
|
||||
|
||||
// More strict test is in test_Q4_1_O.c, here we just do sanity check
|
||||
ASSERT(diff_average <= 2.0F, "Unexpected average difference value %f", diff_average);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -69,49 +69,55 @@ int main(int argc, const char ** argv) {
|
|||
ASSERT(elements_read == N_VOCAB, "Failed to read expected_logits.bin, read %zd elements", elements_read);
|
||||
fclose(file);
|
||||
|
||||
float expected_difference_sum[12] = {
|
||||
float expected_difference_sum[14] = {
|
||||
0.000000F,
|
||||
-0.005320F,
|
||||
|
||||
-0.501214F,
|
||||
-0.160030F,
|
||||
-0.370606F,
|
||||
-0.268956F,
|
||||
0.676837F,
|
||||
0.237099F,
|
||||
0.661480F,
|
||||
-0.170404F,
|
||||
0.278034F,
|
||||
0.071216F,
|
||||
|
||||
-0.501073F,
|
||||
0.154614F,
|
||||
-0.372169F,
|
||||
-0.244590F,
|
||||
0.674874F,
|
||||
0.243007F
|
||||
0.658310F,
|
||||
-0.170043F,
|
||||
0.294953F,
|
||||
0.065571F,
|
||||
};
|
||||
|
||||
test_model("tiny-rwkv-660K-FP32.bin", expected_logits, expected_difference_sum[0]);
|
||||
test_model("tiny-rwkv-660K-FP16.bin", expected_logits, expected_difference_sum[1]);
|
||||
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_0.bin", 2);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_1.bin", 3);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_1_O.bin", 4);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_2.bin", 5);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_3.bin", 6);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_0.bin", "Q4_0");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_1.bin", "Q4_1");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q4_2.bin", "Q4_2");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q5_0.bin", "Q5_0");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q5_1.bin", "Q5_1");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP32.bin", "tiny-rwkv-660K-FP32-Q8_0.bin", "Q8_0");
|
||||
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_0.bin", expected_logits, expected_difference_sum[2]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_1.bin", expected_logits, expected_difference_sum[3]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_1_O.bin", expected_logits, expected_difference_sum[4]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_2.bin", expected_logits, expected_difference_sum[5]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_3.bin", expected_logits, expected_difference_sum[6]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q4_2.bin", expected_logits, expected_difference_sum[4]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q5_0.bin", expected_logits, expected_difference_sum[5]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q5_1.bin", expected_logits, expected_difference_sum[6]);
|
||||
test_model("tiny-rwkv-660K-FP32-Q8_0.bin", expected_logits, expected_difference_sum[7]);
|
||||
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_0.bin", 2);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_1.bin", 3);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_1_O.bin", 4);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_2.bin", 5);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_3.bin", 6);
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_0.bin", "Q4_0");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_1.bin", "Q4_1");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q4_2.bin", "Q4_2");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q5_0.bin", "Q5_0");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q5_1.bin", "Q5_1");
|
||||
rwkv_quantize_model_file("tiny-rwkv-660K-FP16.bin", "tiny-rwkv-660K-FP16-Q8_0.bin", "Q8_0");
|
||||
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_0.bin", expected_logits, expected_difference_sum[7]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_1.bin", expected_logits, expected_difference_sum[8]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_1_O.bin", expected_logits, expected_difference_sum[9]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_0.bin", expected_logits, expected_difference_sum[8]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_1.bin", expected_logits, expected_difference_sum[9]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_2.bin", expected_logits, expected_difference_sum[10]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q4_3.bin", expected_logits, expected_difference_sum[11]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q5_0.bin", expected_logits, expected_difference_sum[11]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q5_1.bin", expected_logits, expected_difference_sum[12]);
|
||||
test_model("tiny-rwkv-660K-FP16-Q8_0.bin", expected_logits, expected_difference_sum[13]);
|
||||
|
||||
free(expected_logits);
|
||||
|
||||
|
|
Loading…
Reference in New Issue