Remove reference implementation code and test against pre-created logits
This commit is contained in:
parent
bf88e8a246
commit
0fcb7c64c6
15
README.md
15
README.md
|
@ -6,14 +6,13 @@ This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [gger
|
|||
|
||||
## Plan
|
||||
|
||||
1. Remove reference implementation code from this repo
|
||||
2. Heavily refactor code; optimize where possible
|
||||
3. Make FP16 inference work
|
||||
4. Create proper interface (probably, C library)
|
||||
5. Create Python wrapper with sampling and simple chat interface
|
||||
6. Write a good `README.md` and publish links to this repo
|
||||
7. Make INT4 inference work
|
||||
8. Create pull request to main `ggml` repo with all improvements made here
|
||||
1. Heavily refactor code; optimize where possible
|
||||
2. Make FP16 inference work
|
||||
3. Create proper interface (probably, C library)
|
||||
4. Create Python wrapper with sampling and simple chat interface
|
||||
5. Write a good `README.md` and publish links to this repo
|
||||
6. Make INT4 inference work
|
||||
7. Create pull request to main `ggml` repo with all improvements made here
|
||||
|
||||
## Structure
|
||||
|
||||
|
|
|
@ -1,16 +1,17 @@
|
|||
# Compares logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV.
|
||||
# Usage: python compare_cpp_with_reference_implementation.py C:\RWKV-4-Pile-169M-20220807-8023.pth bin\Release\main_rwkv.exe C:\rwkv.cpp-169M.bin
|
||||
# Reference logits were generated with RWKV-4-Pile-169M-20220807-8023.pth model in PyTorch.
|
||||
# Reference implementation code: https://github.com/BlinkDL/ChatRWKV/blob/0d0abf181356c6f27501274cad18bdf28c83a45b/RWKV_in_150_lines.py
|
||||
# Usage: python compare_cpp_with_reference_implementation.py bin\Release\main_rwkv.exe C:\rwkv.cpp-169M.bin
|
||||
|
||||
import os
|
||||
import argparse
|
||||
import subprocess
|
||||
import rwkv_model
|
||||
import torch
|
||||
import numpy as np
|
||||
from typing import List
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Compare logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV')
|
||||
parser.add_argument('torch_model_path', help='Path to PyTorch checkpoint file')
|
||||
parser.add_argument('main_executable_path', help='Path to main rwkv.cpp executable file')
|
||||
parser.add_argument('ggml_model_path', help='Path to rwkv.cpp checkpoint file')
|
||||
return parser.parse_args()
|
||||
|
@ -18,21 +19,27 @@ def parse_args():
|
|||
def main() -> None:
|
||||
args = parse_args()
|
||||
|
||||
token_count: int = 64
|
||||
# It's not important what exactly these tokens are; just that output of both model matches.
|
||||
tokens: List[int] = [(i + 1) for i in range(token_count)]
|
||||
# Don't want to depend on tokenizer here.
|
||||
# Exact string is:
|
||||
# context = "1 In the beginning God created the heaven and the earth. " \
|
||||
# "2 And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters. " \
|
||||
# "3 And God said, Let there be light: and there was light. " \
|
||||
# "4 And God saw the light, that it was good: and God divided the light from the darkness."
|
||||
# The Bible was the first non-copyrighted public domain text that came to my mind.
|
||||
tokens: List[int] = [18, 496, 253, 5068, 2656, 3562, 253, 13926, 285, 253, 6149, 15, 374, 1244, 253, 6149, 369, 1293, 830,
|
||||
13, 285, 2991, 28, 285, 13862, 369, 2220, 253, 2454, 273, 253, 3676, 15, 1244, 253, 14559, 273, 2656,
|
||||
4395, 2220, 253, 2454, 273, 253, 12685, 15, 495, 1244, 2656, 753, 13, 1281, 627, 320, 1708, 27, 285,
|
||||
627, 369, 1708, 15, 577, 1244, 2656, 3047, 253, 1708, 13, 326, 352, 369, 1175, 27, 285, 2656, 4272,
|
||||
253, 1708, 432, 253, 13862, 15]
|
||||
|
||||
token_count: int = len(tokens)
|
||||
state_path: str = './state.bin'
|
||||
logits_path: str = './logits.bin'
|
||||
|
||||
reference_model: rwkv_model.RWKV_RNN = rwkv_model.RWKV_RNN(args.torch_model_path)
|
||||
|
||||
ref_logits, ref_state = None, None
|
||||
|
||||
for i in range(token_count):
|
||||
token: int = tokens[i]
|
||||
|
||||
print()
|
||||
print(f'--- {i + 1}/{token_count} ---')
|
||||
print(f'{i + 1}/{token_count}')
|
||||
|
||||
subprocess.run(
|
||||
[
|
||||
|
@ -40,25 +47,31 @@ def main() -> None:
|
|||
args.ggml_model_path,
|
||||
str(token),
|
||||
# If this is the first token, let the script create a new state.
|
||||
'' if ref_state is None else state_path,
|
||||
'' if i == 0 else state_path,
|
||||
state_path,
|
||||
logits_path
|
||||
],
|
||||
check=True
|
||||
)
|
||||
|
||||
with open(logits_path, 'rb') as logits_file:
|
||||
actual_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
|
||||
expected_logits_path: str = 'expected_logits_169M_20220807_8023.bin'
|
||||
|
||||
ref_logits, ref_state = reference_model.forward(token, ref_state)
|
||||
if not os.path.isfile(expected_logits_path):
|
||||
expected_logits_path = 'rwkv/' + expected_logits_path
|
||||
|
||||
difference: float = (torch.sum(ref_logits - actual_logits) / len(ref_logits)).item()
|
||||
with open(expected_logits_path, 'rb') as logits_file:
|
||||
expected_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
|
||||
|
||||
print(f'Reference logits: {ref_logits}')
|
||||
print(f'Actual logits: {actual_logits}')
|
||||
print('Difference per token: %.8f' % (difference,))
|
||||
with open(logits_path, 'rb') as logits_file:
|
||||
actual_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
|
||||
|
||||
assert abs(difference) <= 0.00005, 'Difference is too big'
|
||||
difference: float = (torch.sum(expected_logits - actual_logits) / len(expected_logits)).item()
|
||||
|
||||
print(f'Reference logits: {expected_logits}')
|
||||
print(f'Actual logits: {actual_logits}')
|
||||
print('Difference per token: %.8f' % (difference,))
|
||||
|
||||
assert abs(difference) <= 0.00005, 'Difference is too big'
|
||||
|
||||
print()
|
||||
print('Test passes')
|
||||
|
|
Binary file not shown.
|
@ -1,239 +0,0 @@
|
|||
# Reference implementation of RWKV in PyTorch.
|
||||
|
||||
# Original code: https://github.com/BlinkDL/ChatRWKV/blob/0d0abf181356c6f27501274cad18bdf28c83a45b/RWKV_in_150_lines.py
|
||||
# Original code by https://github.com/BlinkDL, licensed under Apache License 2.0
|
||||
|
||||
# Improvements made to the original code:
|
||||
# - safetensors loading support
|
||||
# - LoRA loading support
|
||||
# - ln0 absortion support
|
||||
# - general code style improvements
|
||||
|
||||
import time
|
||||
import torch
|
||||
import types
|
||||
from typing import Union, Tuple, Dict, Optional
|
||||
from torch.nn import functional as F
|
||||
|
||||
LORA_R: int = 4
|
||||
LORA_ALPHA: int = 32
|
||||
|
||||
def load_state_dict(file_path: str, device: str) -> Dict[str, torch.Tensor]:
|
||||
print(f'Loading {file_path}')
|
||||
|
||||
if file_path.endswith('.safetensors'):
|
||||
from safetensors import safe_open
|
||||
|
||||
w = {}
|
||||
|
||||
with safe_open(file_path, framework='pt', device=device) as state_dict:
|
||||
for key in state_dict.keys():
|
||||
w[key] = state_dict.get_tensor(key)
|
||||
|
||||
return w
|
||||
else:
|
||||
return torch.load(file_path, map_location=device)
|
||||
|
||||
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
|
||||
n_layer = 0
|
||||
|
||||
while f'blocks.{n_layer}.ln1.weight' in state_dict:
|
||||
n_layer += 1
|
||||
|
||||
assert n_layer > 0
|
||||
|
||||
return n_layer
|
||||
|
||||
class RWKV_RNN(torch.jit.ScriptModule):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_path: str,
|
||||
additional_model_path: Optional[str] = None,
|
||||
device: str = 'cpu',
|
||||
absorb_layer_norm_0: bool = False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.representation: torch.Tensor = torch.tensor([0], dtype=torch.float32, device=device)
|
||||
self.eval()
|
||||
|
||||
print(f'Loading RWKV model from {model_path}')
|
||||
|
||||
w = load_state_dict(model_path, device)
|
||||
|
||||
if additional_model_path is not None:
|
||||
additional_w = load_state_dict(additional_model_path, device)
|
||||
|
||||
for k in additional_w:
|
||||
if k != '_training_state':
|
||||
w[k] = additional_w[k]
|
||||
|
||||
print('Merging LoRA into weights')
|
||||
|
||||
start = time.time()
|
||||
|
||||
for k in list(w.keys()):
|
||||
module_k = k.replace('.weight', '')
|
||||
|
||||
if module_k + '.lora_A.weight' in w:
|
||||
lora_A = w[module_k + '.lora_A.weight']
|
||||
lora_B = w[module_k + '.lora_B.weight']
|
||||
assert lora_B.shape[1] == lora_A.shape[0] == LORA_R
|
||||
w[module_k + '.weight'] = w[module_k + '.weight'] + lora_B @ lora_A * (LORA_ALPHA / LORA_R)
|
||||
del w[module_k + '.lora_A.weight']
|
||||
del w[module_k + '.lora_B.weight']
|
||||
del lora_A
|
||||
del lora_B
|
||||
|
||||
print('Took %.3f sec' % ((time.time() - start),))
|
||||
|
||||
for k in w.keys():
|
||||
if '.time_' in k:
|
||||
# (1, 1, n_embed) -> (n_embed)
|
||||
w[k] = w[k].squeeze()
|
||||
|
||||
if '.time_decay' in k:
|
||||
# The real time decay is like e^{-e^x}
|
||||
w[k] = -torch.exp(w[k].float())
|
||||
elif w[k].dtype != torch.float32:
|
||||
w[k] = w[k].float()
|
||||
|
||||
self.w = types.SimpleNamespace()
|
||||
self.w.blocks = {}
|
||||
|
||||
# Example: "blocks.0.att.time_first" => self.w.blocks[0].att.time_first
|
||||
for k in w.keys():
|
||||
parts = k.split('.')
|
||||
last = parts.pop()
|
||||
here = self.w
|
||||
|
||||
for p in parts:
|
||||
if p.isdigit():
|
||||
p = int(p)
|
||||
|
||||
if p not in here:
|
||||
here[p] = types.SimpleNamespace()
|
||||
|
||||
here = here[p]
|
||||
else:
|
||||
if not hasattr(here, p):
|
||||
setattr(here, p, types.SimpleNamespace())
|
||||
|
||||
here = getattr(here, p)
|
||||
|
||||
setattr(here, last, w[k])
|
||||
|
||||
self.absorb_layer_norm_0 = absorb_layer_norm_0
|
||||
|
||||
if absorb_layer_norm_0:
|
||||
print('Absorbing first LayerNorm into embedding matrix')
|
||||
|
||||
start = time.time()
|
||||
|
||||
for i in range(len(self.w.emb.weight)):
|
||||
self.w.emb.weight[i] = self.layer_norm(self.w.emb.weight[i], self.w.blocks[0].ln0)
|
||||
|
||||
print('Took %.3f sec' % ((time.time() - start),))
|
||||
|
||||
self.n_layer = get_layer_count(w)
|
||||
self.n_embed = self.w.emb.weight.shape[1]
|
||||
|
||||
def layer_norm(self, x, w):
|
||||
return F.layer_norm(x, (self.n_embed,), weight=w.weight, bias=w.bias)
|
||||
|
||||
@torch.jit.script_method
|
||||
def channel_mixing(self, x, state, i: int, time_mix_k, time_mix_r, kw, vw, rw):
|
||||
xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||
xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
||||
state[5 * i + 0] = x
|
||||
r = torch.sigmoid(rw @ xr)
|
||||
k = torch.square(torch.relu(kw @ xk)) # square relu, primer paper
|
||||
return r * (vw @ k)
|
||||
|
||||
@torch.jit.script_method
|
||||
def time_mixing(self, x, state, i: int, time_mix_k, time_mix_v, time_mix_r, time_first, time_decay, kw, vw, rw, ow):
|
||||
xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||
xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
||||
xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
||||
state[5 * i + 1] = x
|
||||
r = torch.sigmoid(rw @ xr)
|
||||
k = kw @ xk
|
||||
v = vw @ xv
|
||||
|
||||
aa = state[5 * i + 2]
|
||||
bb = state[5 * i + 3]
|
||||
pp = state[5 * i + 4]
|
||||
ww = time_first + k
|
||||
qq = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - qq)
|
||||
e2 = torch.exp(ww - qq)
|
||||
a = e1 * aa + e2 * v
|
||||
b = e1 * bb + e2
|
||||
wkv = a / b
|
||||
ww = pp + time_decay
|
||||
qq = torch.maximum(ww, k)
|
||||
e1 = torch.exp(ww - qq)
|
||||
e2 = torch.exp(k - qq)
|
||||
state[5 * i + 2] = e1 * aa + e2 * v
|
||||
state[5 * i + 3] = e1 * bb + e2
|
||||
state[5 * i + 4] = qq
|
||||
return ow @ (r * wkv)
|
||||
|
||||
def warm_up(self):
|
||||
print('Warming up the model')
|
||||
start = time.time()
|
||||
self.forward(0, None)
|
||||
print('Took %.3f sec' % ((time.time() - start),))
|
||||
|
||||
def forward(self, token: int, state: Union[torch.Tensor, None], save_representation: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
with torch.no_grad():
|
||||
x: torch.Tensor = self.w.emb.weight[token]
|
||||
|
||||
if state is None:
|
||||
state = torch.zeros(self.n_layer * 5, self.n_embed, device=x.device)
|
||||
|
||||
for i in range(self.n_layer):
|
||||
# ~Negative infinity
|
||||
state[5 * i + 4] = -1e30
|
||||
|
||||
if not self.absorb_layer_norm_0:
|
||||
x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||
|
||||
for i in range(self.n_layer):
|
||||
att = self.w.blocks[i].att
|
||||
x = x + self.time_mixing(
|
||||
self.layer_norm(x, self.w.blocks[i].ln1),
|
||||
state,
|
||||
i,
|
||||
att.time_mix_k,
|
||||
att.time_mix_v,
|
||||
att.time_mix_r,
|
||||
att.time_first,
|
||||
att.time_decay,
|
||||
att.key.weight,
|
||||
att.value.weight,
|
||||
att.receptance.weight,
|
||||
att.output.weight
|
||||
)
|
||||
|
||||
ffn = self.w.blocks[i].ffn
|
||||
x = x + self.channel_mixing(
|
||||
self.layer_norm(x, self.w.blocks[i].ln2),
|
||||
state,
|
||||
i,
|
||||
ffn.time_mix_k,
|
||||
ffn.time_mix_r,
|
||||
ffn.key.weight,
|
||||
ffn.value.weight,
|
||||
ffn.receptance.weight
|
||||
)
|
||||
|
||||
x = self.layer_norm(x, self.w.ln_out)
|
||||
|
||||
if save_representation:
|
||||
self.representation = x.clone()
|
||||
|
||||
x = (self.w.head.weight @ x).float()
|
||||
|
||||
return x, state
|
Loading…
Reference in New Issue