Remove reference implementation code and test against pre-created logits

This commit is contained in:
saharNooby 2023-04-01 11:09:24 +04:00
parent bf88e8a246
commit 0fcb7c64c6
4 changed files with 41 additions and 268 deletions

View File

@ -6,14 +6,13 @@ This is a port of [BlinkDL/RWKV-LM](https://github.com/BlinkDL/RWKV-LM) to [gger
## Plan
1. Remove reference implementation code from this repo
2. Heavily refactor code; optimize where possible
3. Make FP16 inference work
4. Create proper interface (probably, C library)
5. Create Python wrapper with sampling and simple chat interface
6. Write a good `README.md` and publish links to this repo
7. Make INT4 inference work
8. Create pull request to main `ggml` repo with all improvements made here
1. Heavily refactor code; optimize where possible
2. Make FP16 inference work
3. Create proper interface (probably, C library)
4. Create Python wrapper with sampling and simple chat interface
5. Write a good `README.md` and publish links to this repo
6. Make INT4 inference work
7. Create pull request to main `ggml` repo with all improvements made here
## Structure

View File

@ -1,16 +1,17 @@
# Compares logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV.
# Usage: python compare_cpp_with_reference_implementation.py C:\RWKV-4-Pile-169M-20220807-8023.pth bin\Release\main_rwkv.exe C:\rwkv.cpp-169M.bin
# Reference logits were generated with RWKV-4-Pile-169M-20220807-8023.pth model in PyTorch.
# Reference implementation code: https://github.com/BlinkDL/ChatRWKV/blob/0d0abf181356c6f27501274cad18bdf28c83a45b/RWKV_in_150_lines.py
# Usage: python compare_cpp_with_reference_implementation.py bin\Release\main_rwkv.exe C:\rwkv.cpp-169M.bin
import os
import argparse
import subprocess
import rwkv_model
import torch
import numpy as np
from typing import List
def parse_args():
parser = argparse.ArgumentParser(description='Compare logits from rwkv.cpp implementation of RWKV with logits from reference implementation of RWKV')
parser.add_argument('torch_model_path', help='Path to PyTorch checkpoint file')
parser.add_argument('main_executable_path', help='Path to main rwkv.cpp executable file')
parser.add_argument('ggml_model_path', help='Path to rwkv.cpp checkpoint file')
return parser.parse_args()
@ -18,21 +19,27 @@ def parse_args():
def main() -> None:
args = parse_args()
token_count: int = 64
# It's not important what exactly these tokens are; just that output of both model matches.
tokens: List[int] = [(i + 1) for i in range(token_count)]
# Don't want to depend on tokenizer here.
# Exact string is:
# context = "1 In the beginning God created the heaven and the earth. " \
# "2 And the earth was without form, and void; and darkness was upon the face of the deep. And the Spirit of God moved upon the face of the waters. " \
# "3 And God said, Let there be light: and there was light. " \
# "4 And God saw the light, that it was good: and God divided the light from the darkness."
# The Bible was the first non-copyrighted public domain text that came to my mind.
tokens: List[int] = [18, 496, 253, 5068, 2656, 3562, 253, 13926, 285, 253, 6149, 15, 374, 1244, 253, 6149, 369, 1293, 830,
13, 285, 2991, 28, 285, 13862, 369, 2220, 253, 2454, 273, 253, 3676, 15, 1244, 253, 14559, 273, 2656,
4395, 2220, 253, 2454, 273, 253, 12685, 15, 495, 1244, 2656, 753, 13, 1281, 627, 320, 1708, 27, 285,
627, 369, 1708, 15, 577, 1244, 2656, 3047, 253, 1708, 13, 326, 352, 369, 1175, 27, 285, 2656, 4272,
253, 1708, 432, 253, 13862, 15]
token_count: int = len(tokens)
state_path: str = './state.bin'
logits_path: str = './logits.bin'
reference_model: rwkv_model.RWKV_RNN = rwkv_model.RWKV_RNN(args.torch_model_path)
ref_logits, ref_state = None, None
for i in range(token_count):
token: int = tokens[i]
print()
print(f'--- {i + 1}/{token_count} ---')
print(f'{i + 1}/{token_count}')
subprocess.run(
[
@ -40,21 +47,27 @@ def main() -> None:
args.ggml_model_path,
str(token),
# If this is the first token, let the script create a new state.
'' if ref_state is None else state_path,
'' if i == 0 else state_path,
state_path,
logits_path
],
check=True
)
expected_logits_path: str = 'expected_logits_169M_20220807_8023.bin'
if not os.path.isfile(expected_logits_path):
expected_logits_path = 'rwkv/' + expected_logits_path
with open(expected_logits_path, 'rb') as logits_file:
expected_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
with open(logits_path, 'rb') as logits_file:
actual_logits = torch.tensor(np.frombuffer(logits_file.read(), dtype=np.single))
ref_logits, ref_state = reference_model.forward(token, ref_state)
difference: float = (torch.sum(expected_logits - actual_logits) / len(expected_logits)).item()
difference: float = (torch.sum(ref_logits - actual_logits) / len(ref_logits)).item()
print(f'Reference logits: {ref_logits}')
print(f'Reference logits: {expected_logits}')
print(f'Actual logits: {actual_logits}')
print('Difference per token: %.8f' % (difference,))

Binary file not shown.

View File

@ -1,239 +0,0 @@
# Reference implementation of RWKV in PyTorch.
# Original code: https://github.com/BlinkDL/ChatRWKV/blob/0d0abf181356c6f27501274cad18bdf28c83a45b/RWKV_in_150_lines.py
# Original code by https://github.com/BlinkDL, licensed under Apache License 2.0
# Improvements made to the original code:
# - safetensors loading support
# - LoRA loading support
# - ln0 absortion support
# - general code style improvements
import time
import torch
import types
from typing import Union, Tuple, Dict, Optional
from torch.nn import functional as F
LORA_R: int = 4
LORA_ALPHA: int = 32
def load_state_dict(file_path: str, device: str) -> Dict[str, torch.Tensor]:
print(f'Loading {file_path}')
if file_path.endswith('.safetensors'):
from safetensors import safe_open
w = {}
with safe_open(file_path, framework='pt', device=device) as state_dict:
for key in state_dict.keys():
w[key] = state_dict.get_tensor(key)
return w
else:
return torch.load(file_path, map_location=device)
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
n_layer = 0
while f'blocks.{n_layer}.ln1.weight' in state_dict:
n_layer += 1
assert n_layer > 0
return n_layer
class RWKV_RNN(torch.jit.ScriptModule):
def __init__(
self,
model_path: str,
additional_model_path: Optional[str] = None,
device: str = 'cpu',
absorb_layer_norm_0: bool = False
):
super().__init__()
self.representation: torch.Tensor = torch.tensor([0], dtype=torch.float32, device=device)
self.eval()
print(f'Loading RWKV model from {model_path}')
w = load_state_dict(model_path, device)
if additional_model_path is not None:
additional_w = load_state_dict(additional_model_path, device)
for k in additional_w:
if k != '_training_state':
w[k] = additional_w[k]
print('Merging LoRA into weights')
start = time.time()
for k in list(w.keys()):
module_k = k.replace('.weight', '')
if module_k + '.lora_A.weight' in w:
lora_A = w[module_k + '.lora_A.weight']
lora_B = w[module_k + '.lora_B.weight']
assert lora_B.shape[1] == lora_A.shape[0] == LORA_R
w[module_k + '.weight'] = w[module_k + '.weight'] + lora_B @ lora_A * (LORA_ALPHA / LORA_R)
del w[module_k + '.lora_A.weight']
del w[module_k + '.lora_B.weight']
del lora_A
del lora_B
print('Took %.3f sec' % ((time.time() - start),))
for k in w.keys():
if '.time_' in k:
# (1, 1, n_embed) -> (n_embed)
w[k] = w[k].squeeze()
if '.time_decay' in k:
# The real time decay is like e^{-e^x}
w[k] = -torch.exp(w[k].float())
elif w[k].dtype != torch.float32:
w[k] = w[k].float()
self.w = types.SimpleNamespace()
self.w.blocks = {}
# Example: "blocks.0.att.time_first" => self.w.blocks[0].att.time_first
for k in w.keys():
parts = k.split('.')
last = parts.pop()
here = self.w
for p in parts:
if p.isdigit():
p = int(p)
if p not in here:
here[p] = types.SimpleNamespace()
here = here[p]
else:
if not hasattr(here, p):
setattr(here, p, types.SimpleNamespace())
here = getattr(here, p)
setattr(here, last, w[k])
self.absorb_layer_norm_0 = absorb_layer_norm_0
if absorb_layer_norm_0:
print('Absorbing first LayerNorm into embedding matrix')
start = time.time()
for i in range(len(self.w.emb.weight)):
self.w.emb.weight[i] = self.layer_norm(self.w.emb.weight[i], self.w.blocks[0].ln0)
print('Took %.3f sec' % ((time.time() - start),))
self.n_layer = get_layer_count(w)
self.n_embed = self.w.emb.weight.shape[1]
def layer_norm(self, x, w):
return F.layer_norm(x, (self.n_embed,), weight=w.weight, bias=w.bias)
@torch.jit.script_method
def channel_mixing(self, x, state, i: int, time_mix_k, time_mix_r, kw, vw, rw):
xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
state[5 * i + 0] = x
r = torch.sigmoid(rw @ xr)
k = torch.square(torch.relu(kw @ xk)) # square relu, primer paper
return r * (vw @ k)
@torch.jit.script_method
def time_mixing(self, x, state, i: int, time_mix_k, time_mix_v, time_mix_r, time_first, time_decay, kw, vw, rw, ow):
xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
state[5 * i + 1] = x
r = torch.sigmoid(rw @ xr)
k = kw @ xk
v = vw @ xv
aa = state[5 * i + 2]
bb = state[5 * i + 3]
pp = state[5 * i + 4]
ww = time_first + k
qq = torch.maximum(pp, ww)
e1 = torch.exp(pp - qq)
e2 = torch.exp(ww - qq)
a = e1 * aa + e2 * v
b = e1 * bb + e2
wkv = a / b
ww = pp + time_decay
qq = torch.maximum(ww, k)
e1 = torch.exp(ww - qq)
e2 = torch.exp(k - qq)
state[5 * i + 2] = e1 * aa + e2 * v
state[5 * i + 3] = e1 * bb + e2
state[5 * i + 4] = qq
return ow @ (r * wkv)
def warm_up(self):
print('Warming up the model')
start = time.time()
self.forward(0, None)
print('Took %.3f sec' % ((time.time() - start),))
def forward(self, token: int, state: Union[torch.Tensor, None], save_representation: bool = False) -> Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad():
x: torch.Tensor = self.w.emb.weight[token]
if state is None:
state = torch.zeros(self.n_layer * 5, self.n_embed, device=x.device)
for i in range(self.n_layer):
# ~Negative infinity
state[5 * i + 4] = -1e30
if not self.absorb_layer_norm_0:
x = self.layer_norm(x, self.w.blocks[0].ln0)
for i in range(self.n_layer):
att = self.w.blocks[i].att
x = x + self.time_mixing(
self.layer_norm(x, self.w.blocks[i].ln1),
state,
i,
att.time_mix_k,
att.time_mix_v,
att.time_mix_r,
att.time_first,
att.time_decay,
att.key.weight,
att.value.weight,
att.receptance.weight,
att.output.weight
)
ffn = self.w.blocks[i].ffn
x = x + self.channel_mixing(
self.layer_norm(x, self.w.blocks[i].ln2),
state,
i,
ffn.time_mix_k,
ffn.time_mix_r,
ffn.key.weight,
ffn.value.weight,
ffn.receptance.weight
)
x = self.layer_norm(x, self.w.ln_out)
if save_representation:
self.representation = x.clone()
x = (self.w.head.weight @ x).float()
return x, state