vault backup: 2024-09-10 14:43:37
Affected files: Unsloth.md
This commit is contained in:
		
							parent
							
								
									925254f4ca
								
							
						
					
					
						commit
						e4753b27a9
					
				
							
								
								
									
										70
									
								
								Unsloth.md
								
								
								
								
							
							
						
						
									
										70
									
								
								Unsloth.md
								
								
								
								
							| 
						 | 
					@ -592,6 +592,76 @@ Adjusting the `LoraConfig` parameters allows you to balance model performance an
 | 
				
			||||||
- **Description**: Used for down-projection, typically reducing the dimensionality of the input.
 | 
					- **Description**: Used for down-projection, typically reducing the dimensionality of the input.
 | 
				
			||||||
- **Impact**: Compresses the input to a lower-dimensional space, useful for reducing computational complexity and controlling the model size.
 | 
					- **Impact**: Compresses the input to a lower-dimensional space, useful for reducing computational complexity and controlling the model size.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					-----
 | 
				
			||||||
 | 
					# 🏆Reward Modelling - DPO & ORPO
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					To use DPO or ORPO with Unsloth, follow the steps below:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					DPO (Direct Preference Optimization), ORPO (Odds Ratio Preference Optimization), PPO, Reward Modelling all work with Unsloth.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We have Google Colab notebooks for reproducing ORPO and DPO Zephyr:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- [ORPO notebook](https://colab.research.google.com/drive/11t4njE3c4Lxl-07OD8lJSMKkfyJml3Tn?usp=sharing)
 | 
				
			||||||
 | 
					- [DPO Zephyr notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					We're also in 🤗Hugging Face's official docs! We're on the [SFT docs](https://huggingface.co/docs/trl/main/en/sft_trainer#accelerate-fine-tuning-2x-using-unsloth) and the [DPO docs](https://huggingface.co/docs/trl/main/en/dpo_trainer#accelerate-dpo-fine-tuning-using-unsloth).
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## DPO Code
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					from unsloth import FastLanguageModel, PatchDPOTrainer
 | 
				
			||||||
 | 
					from unsloth import is_bfloat16_supported
 | 
				
			||||||
 | 
					PatchDPOTrainer()
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from transformers import TrainingArguments
 | 
				
			||||||
 | 
					from trl import DPOTrainer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					model, tokenizer = FastLanguageModel.from_pretrained(
 | 
				
			||||||
 | 
					    model_name = "unsloth/zephyr-sft-bnb-4bit",
 | 
				
			||||||
 | 
					    max_seq_length = max_seq_length,
 | 
				
			||||||
 | 
					    dtype = None,
 | 
				
			||||||
 | 
					    load_in_4bit = True,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Do model patching and add fast LoRA weights
 | 
				
			||||||
 | 
					model = FastLanguageModel.get_peft_model(
 | 
				
			||||||
 | 
					    model,
 | 
				
			||||||
 | 
					    r = 64,
 | 
				
			||||||
 | 
					    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
 | 
				
			||||||
 | 
					                      "gate_proj", "up_proj", "down_proj",],
 | 
				
			||||||
 | 
					    lora_alpha = 64,
 | 
				
			||||||
 | 
					    lora_dropout = 0, # Supports any, but = 0 is optimized
 | 
				
			||||||
 | 
					    bias = "none",    # Supports any, but = "none" is optimized
 | 
				
			||||||
 | 
					    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
 | 
				
			||||||
 | 
					    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
 | 
				
			||||||
 | 
					    random_state = 3407,
 | 
				
			||||||
 | 
					    max_seq_length = max_seq_length,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					dpo_trainer = DPOTrainer(
 | 
				
			||||||
 | 
					    model = model,
 | 
				
			||||||
 | 
					    ref_model = None,
 | 
				
			||||||
 | 
					    args = TrainingArguments(
 | 
				
			||||||
 | 
					        per_device_train_batch_size = 4,
 | 
				
			||||||
 | 
					        gradient_accumulation_steps = 8,
 | 
				
			||||||
 | 
					        warmup_ratio = 0.1,
 | 
				
			||||||
 | 
					        num_train_epochs = 3,
 | 
				
			||||||
 | 
					        fp16 = not is_bfloat16_supported(),
 | 
				
			||||||
 | 
					        bf16 = is_bfloat16_supported(),
 | 
				
			||||||
 | 
					        logging_steps = 1,
 | 
				
			||||||
 | 
					        optim = "adamw_8bit",
 | 
				
			||||||
 | 
					        seed = 42,
 | 
				
			||||||
 | 
					        output_dir = "outputs",
 | 
				
			||||||
 | 
					    ),
 | 
				
			||||||
 | 
					    beta = 0.1,
 | 
				
			||||||
 | 
					    train_dataset = YOUR_DATASET_HERE,
 | 
				
			||||||
 | 
					    # eval_dataset = YOUR_DATASET_HERE,
 | 
				
			||||||
 | 
					    tokenizer = tokenizer,
 | 
				
			||||||
 | 
					    max_length = 1024,
 | 
				
			||||||
 | 
					    max_prompt_length = 512,
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					dpo_trainer.train()
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
----------
 | 
					----------
 | 
				
			||||||
# ⚠️Errors
 | 
					# ⚠️Errors
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in New Issue